当前位置: 首页 > news >正文

计算结构体大小

计算结构体大小

目录

  • 计算结构体大小
    • 一. 结构体内存对齐
      • 1. 简介
      • 2. 嵌套结构体
    • 二. offsetof
    • 三. 内存对齐的意义
    • 四. 修改默认对齐数

一. 结构体内存对齐

以字节(bety)为单位

1. 简介

对于结构体成员在内存里的存储,存在结构体的对齐规则,并不是连续存放的。

例1:对下面程序,你认为结构体s的大小是多少呢?

#include <stdio.h>struct S1
{char a;int b;char c;
};int main()
{struct S1 s;printf("%d\n", sizeof(s));return 0;
}
  • 第一个成员存放的位置是该结构体偏移量为0的地址
    在这里插入图片描述

  • 其他成员变量需要根据偏移量存放在其对齐数的整数倍的位置处

vs 下:对齐数 = 编译器默认对齐数(值为8) 与 该成员变量大小的最小值

(Linux下: 对齐数 = 该成员变量的大小)

在这里插入图片描述


  • 结构体总大小是其每个成员对齐数中最大数值的整数倍
    在这里插入图片描述

2. 嵌套结构体

例2: 对下面代码中,结构体s的大小是?

#include <stdio.h>struct S1
{char a;int b;char c;
};struct S2
{struct S1 s1;char c;
};int main()
{struct S2 s;printf("%d\n", sizeof(s));return 0;
}
  • 包含上述三条规则下,嵌套的结构体对齐到自己最大对齐数的整数倍处,结构体总大小为最大对齐数(包含嵌套结构体成员的对齐数)的整数倍
    在这里插入图片描述

二. offsetof

在这里插入图片描述

  • 该宏可以用于计算结果体成员相对于起始位置的偏移量

示例:
在这里插入图片描述

  • 原码解析

    #define offsetof(s,m) ((size_t)&(((s*)0)->m))
    

将数字0(地址为0x00000000)强转为s*类型的数据,s是结构体,m是其成员,

通过&((s* )0->m)得到成员m处的地址,再转换为size_t类型数据(相当于得到m地址距离结构体起始地址0x00000000的偏移字节数)。


三. 内存对齐的意义

  1. 在不同平台下,不是所有硬件平台都可以取任意地址访问数据,某些平台只能在某些地址处取特点大小的数据。
  2. 此时对于内存对齐后的数据,处理器访问会更加便捷

示例:
在这里插入图片描述

结构体内存对齐为了用空间来换取时间

但是我们可以利用结构体内存对齐规则,更合理的设计成员变量位置,如:让占用空间小的成员放在一起。

四. 修改默认对齐数

在vs(Visual Studio)编译器下存在默认对齐数(8)

如果我们想要修改为其他数值,也是可以的。

使用预处理指令#pragma pack(数字),修改成你想要的结果

示例:
在这里插入图片描述

将默认对齐数调至2后,对于结构体s1:a在偏移量0的空间,b在偏移量2~5的空间,c在偏移量6的空间。从0 ~ 6一共7个字节的空间,不是最大对齐数2的整数倍,所有会再浪费1个字节空间,总大小为8个字节。

通常修改的默认对齐数都是2n2^n2n , n=(0,1,2...)n=(0,1,2...)n=(0,1,2...)

s1:a在偏移量0的空间,b在偏移量2~5的空间,c在偏移量6的空间。从0 ~ 6一共7个字节的空间,不是最大对齐数2的整数倍,所有会再浪费1个字节空间,总大小为8个字节。

通常修改的默认对齐数都是2n2^n2n , n=(0,1,2...)n=(0,1,2...)n=(0,1,2...)

🦀🦀观看~

相关文章:

计算结构体大小

计算结构体大小 目录计算结构体大小一. 结构体内存对齐1. 简介2. 嵌套结构体二. offsetof三. 内存对齐的意义四. 修改默认对齐数一. 结构体内存对齐 以字节&#xff08;bety&#xff09;为单位 1. 简介 对于结构体成员在内存里的存储&#xff0c;存在结构体的对齐规则&#…...

第二十一篇 数据增强

文章目录 摘要1、数据增强的作用2、常用的图像增强方法2.1、一些辅助函数ToTensorToPILImageNormalizeResize2.2、中心裁剪2.3、亮度、对比度和颜色的变化2.4、随机裁剪2.5、随机灰度与灰度2.6、水平/竖直翻转2.6.1、水平翻转2.6.2、垂直旋转2.7、随机角度旋转2.8、随机仿射变换…...

记一次线上es慢查询导致的服务不可用

现象 某日线上业务同学反馈订单列表查询页面一直loding&#xff0c;然后提示请求超时&#xff0c;几分钟之后恢复正常 接到报障之后&#xff0c;马上根据接口URL&#xff0c;定位到了请求链路&#xff0c;发现是es查询超时&#xff0c;这里我们的业务订单表数据是由几百万的&a…...

分布式之ZAB协议

写在前面 假定我们现在使用zk执行了如下的指令&#xff1a; [zk: 192.168.0.10:2181(CONNECTED) 0] create /dongshidaddy 123 Created /dongshidaddy [zk: 192.168.0.10:2181(CONNECTED) 1] create /dongshidaddy/mongo 456 Created /dongshidaddy/mongo假定因为节点故障最终…...

MySQL binlog常用命令及设置清理时间

MySQL binlog常用命令及设置清理时间1 binlog 基本概念2 binlog常用命令3 清理MySQL的binlog日志3.1 自动清理3.2 手动清理文章参考&#xff1a; http://www.360doc.com/content/22/0418/08/65840191_1027038859.shtml https://www.cnblogs.com/kiko2014551511/p/11532426.html…...

Windows下载安装Prometheus

目录 资料 下载 解压 点击prometheus.exe运行 资料 Prometheus是一个开源的系统监控和报警系统&#xff0c;同时也支持多种exporter采集数据&#xff0c;还支持pushgateway进行数据上报&#xff0c;Prometheus性能足够支撑上万台规模的集群。 官网&#xff1a;https://pr…...

0-1背包、完全背包及其变形【零神基础精讲】

来源0x3f&#xff1a;https://space.bilibili.com/206214 三叶姐的对背包问题的总结&#xff1a;【宫水三叶】详解完全背包一维空间优化推导&#xff08;附背包问题攻略&#xff09;https://leetcode.cn/circle/discuss/GWpXCM/ 文章目录0-1背包、完全背包及其拓展&#xff08;…...

OpenStack

OpenStack优势&#xff1a; 1、模块松耦合。 2、组件配置较为灵活。 3、二次开发容易 OpenStack共享服务组件&#xff1a; 1、数据库服务&#xff1a;MongoDB 2、消息列队&#xff1a;RabbitMQ 3、缓存&#xff1a;Redis 4、存储&#xff1a;Ceph 5、负载均衡&#xff…...

Spring Boot整合Kaptcha实现验证码功能

目录一、前言1.Kaptcha 简介2.Kaptcha 详细配置表二、实现1.整合kaptcha&#xff0c;创建kaptcha的工具类1.1 添加依赖1.2 创建KaptchaConfig工具类2 编写接口&#xff0c;在接口中使用 kaptcha 工具类来生成验证码图片&#xff08;验证码信息&#xff09;并返回3 登录时从sess…...

【2023】某python语言程序设计跟学第一周内容

本文说明&#xff1a; 案例内容为北理工python语言程序设计课程&#xff0c;如有不妥请联系&#xff01; 目录温度转换案例&#xff1a;执行结果&#xff1a;代码解析&#xff1a;白话说明&#xff1a;举一反三&#xff1a;根据输入半径求圆周长或面积执行结果&#xff1a;温度…...

C#学习记录——接口的实现

一小部分知识精英依旧直面核心困难&#xff0c;努力地进行深度钻研&#xff0c;生产内容&#xff1b;而大多数信息受众始终在享受轻度学习&#xff0c;消费内容。如果我们真的希望在时代潮流中占据一席之地&#xff0c;那就应该尽早抛弃轻松学习的幻想&#xff0c;锤炼深度学习…...

“ChatGPT之父”Sam Altman:我是如何成功的?

背靠微软&#xff0c;OpenAI能拳打谷歌&#xff0c;脚踢Meta&#xff0c;它背后的男人&#xff0c;必然不简单。 让我们来看一看&#xff0c;Sam Altman是如何一步步成长为今天这个搅动全世界的男人。 山姆奥特曼&#xff08;Sam Altman&#xff09; 成长和创业经历 在YC创始…...

jQuery发送Ajax请求的几种方式

概述JQuery发送ajax请求的方法有很多&#xff0c;其中最基本的方法是$.ajax&#xff0c;在其中封装的方法有 $.get, $post等。我们分别举了不同的示例。数据格式首先&#xff0c;浏览器与服务器之间传输数据所采用的格式&#xff0c;比较常见的有json&#xff0c;jsonp&#xf…...

Android实现连线题效果

效果图全部正确&#xff1a;有对有错&#xff1a;结果展示&#xff0c;纯黑色&#xff1a;支持图片&#xff1a;实现思路仔细分析可以发现&#xff0c;连线题的布局可以分为两部分&#xff0c;一个是左右两列矩形&#xff0c;另一个是他们之间的连线。每个矩形的宽高都一样&…...

以数据 见未来!首届未来数商大会成功举办

2月25日&#xff0c;2023未来数商大会在杭州未来科技城学术交流中心举办。大会发布了数商产业趋势研究报告&#xff0c;首次提出并探讨了完整的数商产业概念&#xff0c;并成立了未来数商联盟&#xff0c;开通了浙江大数据交易服务平台余杭专区。会上&#xff0c;杭州未来科技城…...

Java数据结构与算法——手撕LRULFU算法

LRU算法 力扣146&#xff1a;https://leetcode-cn.com/problems/lru-cache/ 讲解视频&#xff1a;https://www.bilibili.com/video/BV1Hy4y1B78T?p65&vd_source6f347f8ae76e7f507cf6d661537966e8 LRU是Least Recently Used的缩写&#xff0c;是一种常用的页面置换算法&…...

20230227英语学习

Can Clay Capture Carbon Dioxide? 低碳新思路&#xff1a;粘土也能吸收二氧化碳&#xff01; The atmospheric level of carbon dioxide — a gas that is great at trapping heat, contributing to climate change — is almost double what it was prior to the Industria…...

校招前端高频react面试题合集

了解redux吗&#xff1f; redux 是一个应用数据流框架&#xff0c;主要解决了组件之间状态共享问题&#xff0c;原理是集中式管理&#xff0c;主要有三个核心方法&#xff1a;action store reduce 工作流程 view 调用store的dispatch 接受action传入的store&#xff0c;reduce…...

k8s node之间是如何通信的?

承接上文同一个node中pod之间如何通信&#xff1f;单一Pod上的容器是怎么共享网络命名空间的&#xff1f;每个node上的pod ip和cni0网桥ip和flannel ip都是在同一个网段10.1.71.x上。cni0网桥会把报文发送flannel这个网络设备上&#xff0c;flannel其实是node上的一个后台进程&…...

System V|共享内存基本通信框架搭建|【超详细的代码解释和注释】

前言 那么这里博主先安利一下一些干货满满的专栏啦&#xff01; 手撕数据结构https://blog.csdn.net/yu_cblog/category_11490888.html?spm1001.2014.3001.5482这里包含了博主很多的数据结构学习上的总结&#xff0c;每一篇都是超级用心编写的&#xff0c;有兴趣的伙伴们都支…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

Matlab实现任意伪彩色图像可视化显示

Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中&#xff0c;如何展示好看的实验结果图像非常重要&#xff01;&#xff01;&#xff01; 1、灰度原始图像 灰度图像每个像素点只有一个数值&#xff0c;代表该点的​​亮度&#xff08;或…...