使用决策树预测隐形眼镜类型
任务描述
本关任务:编写一个例子讲解决策树如何预测患者需要佩戴的隐形眼镜类型。使用小数据集,我们就可以利用决策树学到很多知识:眼科医生是如何判断患者需要佩戴的镜片类型,一旦理解了决策树的工作原理,我们甚至也可以帮助人们判断需要佩戴的镜片类型。
相关知识
为了完成本关任务,你需要掌握:1.如何处理隐形眼镜数据集,2.如何使用决策树来进行预测
如何处理隐形眼镜数据集
隐形眼镜数据集包含很多患者眼部状况的观察条件以及医生推荐的隐形眼镜类型。隐形眼镜类型包括硬材质、软材质以及不适合佩戴隐形眼镜。数据来源于UCI数据库,为了更容易显示数据,我么对数据做了简单的更改。
import pandas as pd
if __name__ == '__main__':
with open('lenses.txt', 'r') as fr: #加载文件
lenses = [inst.strip().split('\t') for inst in fr.readlines()]#处理文件
lenses_target = [] #提取每组数据的类别,保存在列表里
for each in lenses:
lenses_target.append(each[-1])
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate'] #特征标签
lenses_list = [] #保存lenses数据的临时列表
lenses_dict = {} #保存lenses数据的字典,用于生成pandas
for each_label in lensesLabels: #提取信息,生成字典
for each in lenses:
lenses_list.append(each[lensesLabels.index(each_label)])
lenses_dict[each_label] = lenses_list
lenses_list = []
print(lenses_dict) #打印字典信息
lenses_pd = pd.DataFrame(lenses_dict) #生成pandas.DataFrame
print(lenses_pd)
我们讲原始的数据信息进行处理,将原始数据处理成有序的数据。
编程要求
根据提示,在右侧编辑器补充代码,添加使用决策树预测的代码
测试说明
平台会对你编写的代码进行测试:
开始你的任务吧,祝你成功!
代码如下:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from io import StringIO
from sklearn.preprocessing import LabelEncoder, OneHotEncoderfrom sklearn import treeif __name__ == '__main__':with open('./src/step3/lenses.txt', 'r') as fr: #加载文件lenses = [inst.strip().split('\t') for inst in fr.readlines()]#处理文件lenses_target = [] #提取每组数据的类别,保存在列表里for each in lenses:lenses_target.append(each[-1])print(lenses_target)lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate'] #特征标签lenses_list = [] #保存lenses数据的临时列表lenses_dict = {} #保存lenses数据的字典,用于生成pandasfor each_label in lensesLabels: #提取信息,生成字典for each in lenses:lenses_list.append(each[lensesLabels.index(each_label)])lenses_dict[each_label] = lenses_listlenses_list = []#print(lenses_dict) #打印字典信息# print(lenses_dict) #打印字典信息############ 请在此处添加你的代码data = pd.DataFrame(lenses_dict) #生成pandas.DataFrameprint(data)#打印pandas.DataFramele = LabelEncoder() #创建LabelEncoder()对象,用于序列化data['age'] = data['age'].map({'young': 2, 'presbyopic': 1, 'pre': 0}) #序列化data['prescript'] = data['prescript'].map({'myope': 1, 'hyper': 0})data['astigmatic'] = data['astigmatic'].map({'no': 0, 'yes': 1})data['tearRate'] = data['tearRate'].map({'reduced': 1, 'normal': 0})print(data)#############
相关文章:

使用决策树预测隐形眼镜类型
任务描述 本关任务:编写一个例子讲解决策树如何预测患者需要佩戴的隐形眼镜类型。使用小数据集,我们就可以利用决策树学到很多知识:眼科医生是如何判断患者需要佩戴的镜片类型,一旦理解了决策树的工作原理,我们甚至也…...

[ACTF2020 新生赛]BackupFile 1
题目环境: 好好好,让找源文件是吧?咱们二话不说直接扫它后台 使用dirsearch工具扫描网站后台(博主有这个工具的压缩包,可以私聊我领取)python dirsearch.py -u http://0d418151-ebaf-4f26-86b2-5363ed16530…...
解决vuex刷新数据丢失
Vuex 是一个 Vue.js 的状态管理库,它使得你可以在 Vue 组件之间共享状态。当你在 Vuex 中更新状态时,如果你遇到数据丢失或数据不一致的问题,可能需要进行深度复制或者使用其他方式来确保数据的完整性。 假设你有一个 Vuex 存储,…...

linux系统下读取当前硬盘的温度
这个其实很简单,借助于smartctl工具(Ubuntu默认安装好了),标红的部分就是当前温度,单位是摄氏度。 sudo smartctl -l scttempsts /dev/sda...

python 深度学习 解决遇到的报错问题8
本篇继python 深度学习 解决遇到的报错问题7-CSDN博客 目录 一、OSError: [WinError 127] 找不到指定的程序。 Error loading "D:\my_ruanjian\conda-myenvs\deeplearning\lib\site-packages\torch\lib\caffe2_detectron_ops.dll" or one of its dependencies. 二、…...
Linux pipe()系统调用示例
Linux系统调用pipe函数,创建一个pipe,通过传入的fd数组返回pipe的读、写两端。 其中fd[ 0 ]用于读,fd[ 1 ]用于写。 一个pipe是单向数据传输的,不用用于父子进程双向读写。创建2个pipe实现父子进程间的双线读写。 #include <u…...
音频中的采样率和比特率
音频中的采样率和比特率 采样频率千比特率音频比特率 采样频率 参考:https://blog.csdn.net/qq_38907791/article/details/88925224 采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它…...
Python常用脚本
1.解压指定文件夹内的zip包,解压到当前位置 import os import zipfile# 指定文件夹路径 folder_path "/path/to/your/folder"# 获取文件夹下所有的zip文件 zip_files [os.path.join(folder_path, file) for file in os.listdir(folder_path) if file.e…...

Redis5 分布式系统之主从模式
目录 分布式系统 引子 分布式系统类型 主从模式 一个主节点和多个从节点 创建多个节点方法 配置主从结构 主从模式知识 主从复制 拓扑结构 1.一主一从 2.一主多从 3.树形主从 主从实现原理 psync数据同步 全量复制和部分复制 psync流程 1.全量数据同步 2.部…...

【黑马程序员】Maven 进阶
文章目录 前言一、分模块开发与设计1. 分模块开发意义2. 分模块开发(模块拆分)2.1 创建 Maven 模块2.2 书写模块代码2.3 通过 Maven 指令安装模块到本地仓库(install 指令) 二、依赖管理1. 依赖传递1.1 依赖传递冲突问题 2. 可选依…...
231108 C语言memset当第三个参数为0,即设置个数为零也不报错
memset语法: void *memset(void *s, int c, size_t n); 犹豫第三个参数为0会不会报错,测试不会。 代码: #include"stdio.h" #include"stdlib.h" // memset memcpy int main() { int sig[100] { 0 }; int …...

HMM与LTP词性标注之马尔科夫模型(HMM原理剖析)
文章目录 问题描述viterbi算法联合概率与条件概率维特比算法实例 问题描述 viterbi算法 联合概率与条件概率 维特比算法实例...

Python自动化测试selenium指定截图文件名方法
这篇文章主要介绍了Python自动化测试selenium指定截图文件名方法,Selenium 支持 Web 浏览器的自动化,它提供一套测试函数,用于支持 Web 自动化测试,下文基于python实现指定截图文件名方法,需要的小伙伴可以参考一下 前…...

Linux 实现文件后半部分的复制
继上次实现文件从后往前数2k的数据进行复制,此次要求是文件的一半且是后半部分。 即复制源文件sour_file的后半部分到dest_file 除了数据上从后2K变化到后一半之外,其他的几乎没有什么变化。 这道题的关键点就在于后一半怎么求,在经历了用 …...

阿里开源中间件一览
1. 概述以及竞品对比 间件介绍官方链接竞品竞品介绍异同点对比Dubbo高性能的RPC框架,用于实现分布式服务的调用和管理。DubbogRPC gRPC是由Google开源的一款高性能、通用的RPC框架,支持多种编程语言 链接:gRPC Dubbo更注重于服务治理和可扩展…...

Ubuntu20.04下Salome_meca 2022软件安装(支持GPU加速)
一、什么是Salome_meca ? Salome_meca 是一个开源的有限元分析软件套件,主要用于模拟和分析复杂的力学问题。它是 Salome 平台的一部分,Salome 是一个通用的集成化软件环境,用于建模、预处理、模拟和后处理各种复杂的工程和科学问…...

uniapp:打包ios配置隐私协议框
使用uniapp打包ios 上架商店需要配置隐私协议政策弹窗。当用户点击确定后才能继续操作。 首先manifest.json中配置使用原生隐私政策提示框是不支持ios的。不用勾选。 解决思路: 1、新建页面:iosLogin.vue,pages.json中 这个页面需要放在第一…...

JS逆向爬虫---请求参数加密③【比特币交易爬虫】
查询参数确定 t无加密 请求头参数加密 X-Apikey参数加密确定 X-Apikey逆向 const API_KEY "a2c903cc-b31e-4547-9299-b6d07b7631ab" function encryptApiKey(){ var t API_KEY, e t.split(""), n e.splice(0, 8);return t e.concat(n).join("&…...
云计算:未来科技的超级英雄
随着科技的不断发展,云计算已经成为了现代社会的核心驱动力之一。从智能家居到无人驾驶,从虚拟现实到人工智能,云计算的崭新时代已经到来,为我们的生活带来了智能、便捷和有趣的体验。本文将带领读者穿越时空,探索未来…...

【Node.js入门】1.3 开始开发Node.js应用程序
1.3 开始开发Node.js应用程序 学习目标 (1)熟悉开发工具Visual Studio Code的基本使用; (2)掌握Node.js应用程序的编写、运行和调试的基本方法。 构建第一个 Node.js应用程序 代码 const http require("htt…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...

2025-05-08-deepseek本地化部署
title: 2025-05-08-deepseek 本地化部署 tags: 深度学习 程序开发 2025-05-08-deepseek 本地化部署 参考博客 本地部署 DeepSeek:小白也能轻松搞定! 如何给本地部署的 DeepSeek 投喂数据,让他更懂你 [实验目的]:理解系统架构与原…...