当前位置: 首页 > news >正文

【单目测距】单目相机测距(三)

文章目录

  • 一、前言
  • 二、测距代码
    • 2.1、地面有坡度
    • 2.2、python代码
      • 2.2.1、旋转矩阵转角度
      • 2.2.2、角度转旋转矩阵
      • 2.2.3、三维旋转原理 (Rotation 原理)
      • 2.2.4、完整代码
    • 2.3、c++ 代码

一、前言

  • 篇博客【单目测距】单目相机测距(二) 有讲到当相机不是理想状态,实际情况如相机安装时候有角度偏差,需要对相机进行标定。同时也分析影响测距误差的多个因素以及各个因素影响权重。
  • 上述都是基于地面与自身平行,当地面存在坡度尤其是上下坡度的时候。此时测距误差会非常之大。如果有 1° 坡度,那么目标在 10 m 处测距就有 20 cm 误差。
  • 如果我们提前已知到地面的坡度 sigma ,我们就应该实时去修正相机外参,此片博客提供传入地面角度,实时修正相机外参的思路与代码。
    在这里插入图片描述

二、测距代码

  • 先回顾一下往期测距代码【单目测距】单目相机测距(二)
  • 输入相机内参、外参、相机高度是提前标定完成
  • 目标像素点由目标检测 bbox 求出。
import numpy as nph = 1.5  # 相机离地面1.5m高
pitch = -0.023797440420123328  # 弧度
pixe_x, pixe_y = 888, 700  # 图像像素点,接地点
CameraMat = np.array([[1008, 0, 945],[0, 1009, 537],[0, 0, 1]])  # 相机内参R = np.array([[-0.0330564609, 0.0238237337, 0.999169505],[0.999452124, -0.000862625046, 0.0330863791, ],[0.00165014972, 0.999715802, -0.0237821659]])  # 旋转矩阵
T = np.array([0, 0, -1.5])sigma = np.arctan((pixe_y - CameraMat[1][2]) / CameraMat[1][1])
z = h * np.cos(sigma) / np.sin(sigma + pitch)  # 深度
x_pixe, y_pixe = 2 * CameraMat[0][2] - pixe_x, 2 * CameraMat[1][2] - pixe_y  # 根据自定坐标系选择是否中心对称转换
camera_x = z * (x_pixe / CameraMat[0][0] - CameraMat[0][2] / CameraMat[0][0])
camera_y = z * (y_pixe / CameraMat[1][1] - CameraMat[1][2] / CameraMat[1][1])
camera_z = z
distance_machine_direction = R[0][0] * camera_x + R[0][1] * camera_y + R[0][2] * camera_z + T[0]  # 纵向距离
distance_transverse_direction = R[1][0] * camera_x + R[1][1] * camera_y + R[1][2] * camera_z + T[1]  # 横向距离
print(distance_machine_direction, distance_transverse_direction)

2.1、地面有坡度

  • 根据前面分析,如果地面有坡度,我们应该实时去修正相机外参。具体怎么做,也很简单。就是实时去更新我们的 pitch 角与相机的外参。
  • 我们前提是需要知道地面坡度是多少,关于如何获取地面坡度,以后有机会再谈。

2.2、python代码

python 从旋转矩阵转化到角度、从角度到转化矩阵,主要用到 scipy 库中的 Rotation。

2.2.1、旋转矩阵转角度

import numpy as np
from scipy.spatial.transform import Rotationr = np.array([-0.0517, -0.0611, 0.9968, 0.9987, 0.0011, 0.0519, -0.0042, 0.9981, 0.0609]).reshape(3, 3)
euler_r = Rotation.from_matrix(r).as_euler('zxy', degrees=False)  # zxy 是 外旋顺序。degrees False 显示弧度,True 显示角度
print(euler_r)# [ 1.56967277 -0.0518037   1.50976086]

2.2.2、角度转旋转矩阵

from scipy.spatial.transform import Rotationeuler_r = [1.56967277, -0.0518037, 1.50976086]
new_r = Rotation.from_euler("zxy", [euler_r[0], euler_r[1], euler_r[2]], degrees=False).as_matrix()

2.2.3、三维旋转原理 (Rotation 原理)

import numpy as np
from scipy.spatial.transform import Rotationdef get_r_matrix(str, alpha):sin = -np.sin(alpha)cos = np.cos(alpha)res = np.eye(3)if str == "z":res = np.array([[cos, sin, 0],[-sin, cos, 0],[0, 0, 1]])elif str == "y":res = np.array([[cos, 0, -sin],[0, 1, 0],[sin, 0, cos]])elif str == "x":res = np.array([[1, 0, 0],[0, cos, sin],[0, -sin, cos]])return reseuler_r = [1.56967277, -0.0518037, 1.50976086]
a, b, c = euler_r[0], euler_r[1], euler_r[2]z = get_r_matrix("z", a)
x = get_r_matrix("x", b)
y = get_r_matrix("y", c)
mtx = y @ x @ z
mtx_1 = Rotation.from_euler("zxy", [a, b, c], degrees=False).as_matrix()
print(mtx, mtx_1)  # 结果完全一致

2.2.4、完整代码

综上所述,可得

import numpy as np
from scipy.spatial.transform import Rotationdiff_pitch = -0.01  # 假设当前地面坡度为 -0.01 弧度
h = 1.5  # 相机离地面1.5m高
pitch = -0.023797440420123328  # 弧度
pitch = pitch + diff_pitch
pixe_x, pixe_y = 888, 700  # 图像像素点,接地点
CameraMat = np.array([[1008, 0, 945],[0, 1009, 537],[0, 0, 1]])  # 相机内参original_r = np.array([[-0.0330564609, 0.0238237337, 0.999169505],[0.999452124, -0.000862625046, 0.0330863791],[0.00165014972, 0.999715802, -0.0237821659]])  # 旋转矩阵
euler_r = Rotation.from_matrix(original_r).as_euler('zxy', degrees=False)
R = Rotation.from_euler("zxy", [euler_r[0], euler_r[1], euler_r[2] + diff_pitch], degrees=False).as_matrix()T = np.array([0, 0, -1.5])  # 平移矩阵sigma = np.arctan((pixe_y - CameraMat[1][2]) / CameraMat[1][1])
z = h * np.cos(sigma) / np.sin(sigma + pitch)  # 深度
x_pixe, y_pixe = 2 * CameraMat[0][2] - pixe_x, 2 * CameraMat[1][2] - pixe_y  # 根据自定坐标系选择是否中心对称转换
camera_x = z * (x_pixe / CameraMat[0][0] - CameraMat[0][2] / CameraMat[0][0])
camera_y = z * (y_pixe / CameraMat[1][1] - CameraMat[1][2] / CameraMat[1][1])
camera_z = z
distance_machine_direction = R[0][0] * camera_x + R[0][1] * camera_y + R[0][2] * camera_z + T[0]  # 纵向距离
distance_transverse_direction = R[1][0] * camera_x + R[1][1] * camera_y + R[1][2] * camera_z + T[1]  # 横向距离
print(distance_machine_direction, distance_transverse_direction)

2.3、c++ 代码

知道了 2.2.3 中的三维旋转原理,那我们利用矩阵乘法就可以轻松获得新外参啦

  double pitchDiff = -0.01;cv::Mat initR = (cv::Mat_<double>(3,3) << -0.0330564609, 0.0238237337, 0.999169505,0.999452124, -0.000862625046, 0.0330863791, 0.00165014972, 0.999715802, -0.0237821659); // 相机初始外参cv::Mat pitchR = (cv::Mat_<double>(3, 3) << cos(pitchDiff), 0, sin(pitchDiff), 0, 1, 0, -sin(pitchDiff), 0, cos(pitchDiff));cv::Mat curR = pitchR * initR;

相关文章:

【单目测距】单目相机测距(三)

文章目录 一、前言二、测距代码2.1、地面有坡度2.2、python代码2.2.1、旋转矩阵转角度2.2.2、角度转旋转矩阵2.2.3、三维旋转原理 (Rotation 原理)2.2.4、完整代码 2.3、c 代码 一、前言 上篇博客【单目测距】单目相机测距&#xff08;二&#xff09; 有讲到当相机不是理想状态…...

Evaluating Large Language Models: A Comprehensive Survey

本文是LLM系列文章&#xff0c;针对《Evaluating Large Language Models: A Comprehensive Survey》的翻译。 评估大型语言模型&#xff1a;一项综合调查 摘要1 引言2 分类和路线图3 知识和能力评估4 对齐评估5 安全评估6 专业LLM评估7 评估组织8 未来方向9 结论 摘要 大型语…...

ElasticSearch 实现 全文检索 支持(PDF、TXT、Word、HTML等文件)通过 ingest-attachment 插件实现 文档的检索

一、Attachment 介绍 Attachment 插件是 Elasticsearch 中的一种插件&#xff0c;允许将各种二进制文件&#xff08;如PDF、Word文档等&#xff09;以及它们的内容索引到 Elasticsearch 中。插件使用 Apache Tika 库来解析和提取二进制文件的内容。通过使用 Attachment 插件&a…...

【Head First 设计模式】-- 策略模式

一、背景 Head First 设计模式第一章设计模式入门–策略模式 二、工具箱的工具&#xff08;本章&#xff09; 1、OO基础 封装 继承 多态 抽象 2、OO原则 封装变化 面向接口编程&#xff0c;而非面向实现编程 组合优于继承 3、OO模式 策略模式&#xff0c;所谓策略模式就是定义…...

能链智电,“重”症在身

文 | 智能相对论 作者 | 陈选滨 在过去的1-9月&#xff0c;充电基础设施增量为243.2万台&#xff0c;新能源汽车销量627.8万辆&#xff0c;充电桩与新能源汽车的增量比为1&#xff1a;2.6&#xff0c;距离工信部此前提出“2025年实现车桩比2:1&#xff0c;2030年实现车桩比1:…...

python 视频硬字幕去除 内嵌字幕去除工具 vsr

项目简介 开源地址&#xff1a;https://github.com/YaoFANGUK/video-subtitle-remover Video-subtitle-remover (VSR) 是一款基于AI技术&#xff0c;将视频中的硬字幕去除的软件。 主要实现了以下功能&#xff1a; 无损分辨率将视频中的硬字幕去除&#xff0c;生成去除字幕后…...

蓝桥等考C++组别六级004

第一部分&#xff1a;选择题 1、C L6 &#xff08;15分&#xff09; 关于switch语句&#xff0c;以下说法正确的是&#xff08; &#xff09;。 A. break语句只能用于switch语句。 B. switch语句中可以使用多个default语句。 C. switch语句中只能使用一个break语句。 D. …...

SpringBoot之Swagger

文章目录 前言一、Swagger简介二、SpringBoot集成Swagger三、配置Swagger四、配置扫描接口五、配置Swagger开关六、配置API分组七、实体配置八、常用注解 前言 作为后端开放人员&#xff0c;最烦的事就是自己写接口文档和别人没有写接口文档&#xff0c;不管是前端还是后端开发…...

抖音小店新的流量变现新时代!

随着短视频平台的日益崛起&#xff0c;抖音小店已成为电商领域的一股不可忽视的力量。抖音小店不仅具有极高的流量优势&#xff0c;还为众多商家提供了一个全新的销售渠道。那么&#xff0c;如何才能充分利用抖音小店的优势&#xff0c;打造出爆款商品&#xff0c;实现流量变现…...

软件架构师

软件架构师在软件开发过程中扮演着至关重要的角色&#xff0c;其主要职责包括&#xff1a; 需求分析&#xff1a;与用户和开发团队沟通&#xff0c;确定软件的需求和功能。设计架构&#xff1a;根据需求分析&#xff0c;设计软件的架构&#xff0c;包括系统架构、数据库架构、…...

postman接口测试

postman使用 开发中经常用postman来测试接口&#xff0c;一个简单的注册接口用postman测试&#xff1a; 接口正常工作只是最基本的要求&#xff0c;经常要评估接口性能&#xff0c;进行压力测试。 postman进行简单压力测试 下面是压测数据源&#xff0c;支持json和csv两个格式…...

技术分享 | web自动化测试-PageObject 设计模式

为 UI 页面写测试用例时&#xff08;比如 web 页面&#xff0c;移动端页面&#xff09;&#xff0c;测试用例会存在大量元素和操作细节。当 UI 变化时&#xff0c;测试用例也要跟着变化&#xff0c; PageObject 很好的解决了这个问题。 使用 UI 自动化测试工具时&#xff08;包…...

Mall4cloud 微服务商城系统 2.0 发布

导读现在 jdk17 和 spring boot 以及 spring cloud alibaba 2022 的第三方依赖已经趋于成熟&#xff0c;所以 mall4cloud 也一把梭哈做了升级嗷。 本次更新重点&#xff1a; 系统由 jdk8 最低要求升级到 jdk17spring boot 由 2.7.x 升级到 3.1.xjavax 升级到 jakartaspring-cl…...

SpringBoot进制转换规则问题

1.填写yml文件 dataSource:driver-class-name: com.mysql.jdbc.Driver789password: 01272.测试类 package com.forever;import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Value; import org.springframework.boot.test.context.Spri…...

12.输入一个小于1000的整数,输出平方根(不是整数,输出整数部分)

#include<stdio.h> #include<math.h>int fun(int n){int b;b pow(n,0.5);printf("%d",b);}int main(){int n;scanf("%d",&n); fun(n);return 0;}...

Django框架的推导

文章目录 Web应用简介什么是Web框架&#xff1f;什么是Web&#xff1f;应用程序的两种模式Web应用程序的优缺点 手写Web框架HTTP协议的相关知识1.四大特性2.请求数据格式3.响应数据格式 手写框架 使用wsgiref模块基于wsgiref模块搭建Web框架(最初版)基于wsgiref模块搭建Web框架…...

广东开放大学:电大搜题助力学子迎考利器

近年来&#xff0c;广东开放大学一直致力于为广大学子提供优质的教育资源和学习服务。作为一所专注于远程教育的学府&#xff0c;广东开放大学不仅拥有雄厚的师资力量和丰富的教育经验&#xff0c;还致力于创新教学手段&#xff0c;为学生提供更便捷、高效的学习体验。在这个信…...

linux 7za 编译安装

本文主要介绍了在linux下安装7z命令的方法&#xff0c;同时介绍了7z命令的使用。7z压缩格式拥有众多优点&#xff0c;具有极高的压缩比率 wget https://zenlayer.dl.sourceforge.net/project/p7zip/p7zip/16.02/p7zip_16.02_src_all.tar.bz2 tar -xjvf p7zip_16.02_src_all.ta…...

【Edge】微软Edge每次启动自动导入Chrome收藏夹,无法取消“每次启动浏览器时导入浏览数据”功能的解决方法(202311)

写在前面 Edge现在也不管用户体验了吗? 这个BUG都快一个月了&#xff0c;还没见修复&#xff0c;从118.0.2088开始&#xff0c;我是在2023年10月份一次更新后发现的这个BUG&#xff0c;结果社区论坛什么信息都没有&#xff0c;英文也没收到。 Edge的BUG现象 不知道哪次Edge…...

报错RuntimeError: no valid convolution algorithms available in CuDNN

报错信息如下RuntimeError: no valid convolution algorithms available in CuDNN 出现这个问题既不是cuda与cudnn版本不匹配&#xff0c;也不是英伟达显卡驱动需要更新&#xff01;而是因为你的显存过低不能训练&#xff0c;解决办法是使用混精度训练&#xff01;&#xff01…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...