当前位置: 首页 > news >正文

【单目测距】单目相机测距(三)

文章目录

  • 一、前言
  • 二、测距代码
    • 2.1、地面有坡度
    • 2.2、python代码
      • 2.2.1、旋转矩阵转角度
      • 2.2.2、角度转旋转矩阵
      • 2.2.3、三维旋转原理 (Rotation 原理)
      • 2.2.4、完整代码
    • 2.3、c++ 代码

一、前言

  • 篇博客【单目测距】单目相机测距(二) 有讲到当相机不是理想状态,实际情况如相机安装时候有角度偏差,需要对相机进行标定。同时也分析影响测距误差的多个因素以及各个因素影响权重。
  • 上述都是基于地面与自身平行,当地面存在坡度尤其是上下坡度的时候。此时测距误差会非常之大。如果有 1° 坡度,那么目标在 10 m 处测距就有 20 cm 误差。
  • 如果我们提前已知到地面的坡度 sigma ,我们就应该实时去修正相机外参,此片博客提供传入地面角度,实时修正相机外参的思路与代码。
    在这里插入图片描述

二、测距代码

  • 先回顾一下往期测距代码【单目测距】单目相机测距(二)
  • 输入相机内参、外参、相机高度是提前标定完成
  • 目标像素点由目标检测 bbox 求出。
import numpy as nph = 1.5  # 相机离地面1.5m高
pitch = -0.023797440420123328  # 弧度
pixe_x, pixe_y = 888, 700  # 图像像素点,接地点
CameraMat = np.array([[1008, 0, 945],[0, 1009, 537],[0, 0, 1]])  # 相机内参R = np.array([[-0.0330564609, 0.0238237337, 0.999169505],[0.999452124, -0.000862625046, 0.0330863791, ],[0.00165014972, 0.999715802, -0.0237821659]])  # 旋转矩阵
T = np.array([0, 0, -1.5])sigma = np.arctan((pixe_y - CameraMat[1][2]) / CameraMat[1][1])
z = h * np.cos(sigma) / np.sin(sigma + pitch)  # 深度
x_pixe, y_pixe = 2 * CameraMat[0][2] - pixe_x, 2 * CameraMat[1][2] - pixe_y  # 根据自定坐标系选择是否中心对称转换
camera_x = z * (x_pixe / CameraMat[0][0] - CameraMat[0][2] / CameraMat[0][0])
camera_y = z * (y_pixe / CameraMat[1][1] - CameraMat[1][2] / CameraMat[1][1])
camera_z = z
distance_machine_direction = R[0][0] * camera_x + R[0][1] * camera_y + R[0][2] * camera_z + T[0]  # 纵向距离
distance_transverse_direction = R[1][0] * camera_x + R[1][1] * camera_y + R[1][2] * camera_z + T[1]  # 横向距离
print(distance_machine_direction, distance_transverse_direction)

2.1、地面有坡度

  • 根据前面分析,如果地面有坡度,我们应该实时去修正相机外参。具体怎么做,也很简单。就是实时去更新我们的 pitch 角与相机的外参。
  • 我们前提是需要知道地面坡度是多少,关于如何获取地面坡度,以后有机会再谈。

2.2、python代码

python 从旋转矩阵转化到角度、从角度到转化矩阵,主要用到 scipy 库中的 Rotation。

2.2.1、旋转矩阵转角度

import numpy as np
from scipy.spatial.transform import Rotationr = np.array([-0.0517, -0.0611, 0.9968, 0.9987, 0.0011, 0.0519, -0.0042, 0.9981, 0.0609]).reshape(3, 3)
euler_r = Rotation.from_matrix(r).as_euler('zxy', degrees=False)  # zxy 是 外旋顺序。degrees False 显示弧度,True 显示角度
print(euler_r)# [ 1.56967277 -0.0518037   1.50976086]

2.2.2、角度转旋转矩阵

from scipy.spatial.transform import Rotationeuler_r = [1.56967277, -0.0518037, 1.50976086]
new_r = Rotation.from_euler("zxy", [euler_r[0], euler_r[1], euler_r[2]], degrees=False).as_matrix()

2.2.3、三维旋转原理 (Rotation 原理)

import numpy as np
from scipy.spatial.transform import Rotationdef get_r_matrix(str, alpha):sin = -np.sin(alpha)cos = np.cos(alpha)res = np.eye(3)if str == "z":res = np.array([[cos, sin, 0],[-sin, cos, 0],[0, 0, 1]])elif str == "y":res = np.array([[cos, 0, -sin],[0, 1, 0],[sin, 0, cos]])elif str == "x":res = np.array([[1, 0, 0],[0, cos, sin],[0, -sin, cos]])return reseuler_r = [1.56967277, -0.0518037, 1.50976086]
a, b, c = euler_r[0], euler_r[1], euler_r[2]z = get_r_matrix("z", a)
x = get_r_matrix("x", b)
y = get_r_matrix("y", c)
mtx = y @ x @ z
mtx_1 = Rotation.from_euler("zxy", [a, b, c], degrees=False).as_matrix()
print(mtx, mtx_1)  # 结果完全一致

2.2.4、完整代码

综上所述,可得

import numpy as np
from scipy.spatial.transform import Rotationdiff_pitch = -0.01  # 假设当前地面坡度为 -0.01 弧度
h = 1.5  # 相机离地面1.5m高
pitch = -0.023797440420123328  # 弧度
pitch = pitch + diff_pitch
pixe_x, pixe_y = 888, 700  # 图像像素点,接地点
CameraMat = np.array([[1008, 0, 945],[0, 1009, 537],[0, 0, 1]])  # 相机内参original_r = np.array([[-0.0330564609, 0.0238237337, 0.999169505],[0.999452124, -0.000862625046, 0.0330863791],[0.00165014972, 0.999715802, -0.0237821659]])  # 旋转矩阵
euler_r = Rotation.from_matrix(original_r).as_euler('zxy', degrees=False)
R = Rotation.from_euler("zxy", [euler_r[0], euler_r[1], euler_r[2] + diff_pitch], degrees=False).as_matrix()T = np.array([0, 0, -1.5])  # 平移矩阵sigma = np.arctan((pixe_y - CameraMat[1][2]) / CameraMat[1][1])
z = h * np.cos(sigma) / np.sin(sigma + pitch)  # 深度
x_pixe, y_pixe = 2 * CameraMat[0][2] - pixe_x, 2 * CameraMat[1][2] - pixe_y  # 根据自定坐标系选择是否中心对称转换
camera_x = z * (x_pixe / CameraMat[0][0] - CameraMat[0][2] / CameraMat[0][0])
camera_y = z * (y_pixe / CameraMat[1][1] - CameraMat[1][2] / CameraMat[1][1])
camera_z = z
distance_machine_direction = R[0][0] * camera_x + R[0][1] * camera_y + R[0][2] * camera_z + T[0]  # 纵向距离
distance_transverse_direction = R[1][0] * camera_x + R[1][1] * camera_y + R[1][2] * camera_z + T[1]  # 横向距离
print(distance_machine_direction, distance_transverse_direction)

2.3、c++ 代码

知道了 2.2.3 中的三维旋转原理,那我们利用矩阵乘法就可以轻松获得新外参啦

  double pitchDiff = -0.01;cv::Mat initR = (cv::Mat_<double>(3,3) << -0.0330564609, 0.0238237337, 0.999169505,0.999452124, -0.000862625046, 0.0330863791, 0.00165014972, 0.999715802, -0.0237821659); // 相机初始外参cv::Mat pitchR = (cv::Mat_<double>(3, 3) << cos(pitchDiff), 0, sin(pitchDiff), 0, 1, 0, -sin(pitchDiff), 0, cos(pitchDiff));cv::Mat curR = pitchR * initR;

相关文章:

【单目测距】单目相机测距(三)

文章目录 一、前言二、测距代码2.1、地面有坡度2.2、python代码2.2.1、旋转矩阵转角度2.2.2、角度转旋转矩阵2.2.3、三维旋转原理 (Rotation 原理)2.2.4、完整代码 2.3、c 代码 一、前言 上篇博客【单目测距】单目相机测距&#xff08;二&#xff09; 有讲到当相机不是理想状态…...

Evaluating Large Language Models: A Comprehensive Survey

本文是LLM系列文章&#xff0c;针对《Evaluating Large Language Models: A Comprehensive Survey》的翻译。 评估大型语言模型&#xff1a;一项综合调查 摘要1 引言2 分类和路线图3 知识和能力评估4 对齐评估5 安全评估6 专业LLM评估7 评估组织8 未来方向9 结论 摘要 大型语…...

ElasticSearch 实现 全文检索 支持(PDF、TXT、Word、HTML等文件)通过 ingest-attachment 插件实现 文档的检索

一、Attachment 介绍 Attachment 插件是 Elasticsearch 中的一种插件&#xff0c;允许将各种二进制文件&#xff08;如PDF、Word文档等&#xff09;以及它们的内容索引到 Elasticsearch 中。插件使用 Apache Tika 库来解析和提取二进制文件的内容。通过使用 Attachment 插件&a…...

【Head First 设计模式】-- 策略模式

一、背景 Head First 设计模式第一章设计模式入门–策略模式 二、工具箱的工具&#xff08;本章&#xff09; 1、OO基础 封装 继承 多态 抽象 2、OO原则 封装变化 面向接口编程&#xff0c;而非面向实现编程 组合优于继承 3、OO模式 策略模式&#xff0c;所谓策略模式就是定义…...

能链智电,“重”症在身

文 | 智能相对论 作者 | 陈选滨 在过去的1-9月&#xff0c;充电基础设施增量为243.2万台&#xff0c;新能源汽车销量627.8万辆&#xff0c;充电桩与新能源汽车的增量比为1&#xff1a;2.6&#xff0c;距离工信部此前提出“2025年实现车桩比2:1&#xff0c;2030年实现车桩比1:…...

python 视频硬字幕去除 内嵌字幕去除工具 vsr

项目简介 开源地址&#xff1a;https://github.com/YaoFANGUK/video-subtitle-remover Video-subtitle-remover (VSR) 是一款基于AI技术&#xff0c;将视频中的硬字幕去除的软件。 主要实现了以下功能&#xff1a; 无损分辨率将视频中的硬字幕去除&#xff0c;生成去除字幕后…...

蓝桥等考C++组别六级004

第一部分&#xff1a;选择题 1、C L6 &#xff08;15分&#xff09; 关于switch语句&#xff0c;以下说法正确的是&#xff08; &#xff09;。 A. break语句只能用于switch语句。 B. switch语句中可以使用多个default语句。 C. switch语句中只能使用一个break语句。 D. …...

SpringBoot之Swagger

文章目录 前言一、Swagger简介二、SpringBoot集成Swagger三、配置Swagger四、配置扫描接口五、配置Swagger开关六、配置API分组七、实体配置八、常用注解 前言 作为后端开放人员&#xff0c;最烦的事就是自己写接口文档和别人没有写接口文档&#xff0c;不管是前端还是后端开发…...

抖音小店新的流量变现新时代!

随着短视频平台的日益崛起&#xff0c;抖音小店已成为电商领域的一股不可忽视的力量。抖音小店不仅具有极高的流量优势&#xff0c;还为众多商家提供了一个全新的销售渠道。那么&#xff0c;如何才能充分利用抖音小店的优势&#xff0c;打造出爆款商品&#xff0c;实现流量变现…...

软件架构师

软件架构师在软件开发过程中扮演着至关重要的角色&#xff0c;其主要职责包括&#xff1a; 需求分析&#xff1a;与用户和开发团队沟通&#xff0c;确定软件的需求和功能。设计架构&#xff1a;根据需求分析&#xff0c;设计软件的架构&#xff0c;包括系统架构、数据库架构、…...

postman接口测试

postman使用 开发中经常用postman来测试接口&#xff0c;一个简单的注册接口用postman测试&#xff1a; 接口正常工作只是最基本的要求&#xff0c;经常要评估接口性能&#xff0c;进行压力测试。 postman进行简单压力测试 下面是压测数据源&#xff0c;支持json和csv两个格式…...

技术分享 | web自动化测试-PageObject 设计模式

为 UI 页面写测试用例时&#xff08;比如 web 页面&#xff0c;移动端页面&#xff09;&#xff0c;测试用例会存在大量元素和操作细节。当 UI 变化时&#xff0c;测试用例也要跟着变化&#xff0c; PageObject 很好的解决了这个问题。 使用 UI 自动化测试工具时&#xff08;包…...

Mall4cloud 微服务商城系统 2.0 发布

导读现在 jdk17 和 spring boot 以及 spring cloud alibaba 2022 的第三方依赖已经趋于成熟&#xff0c;所以 mall4cloud 也一把梭哈做了升级嗷。 本次更新重点&#xff1a; 系统由 jdk8 最低要求升级到 jdk17spring boot 由 2.7.x 升级到 3.1.xjavax 升级到 jakartaspring-cl…...

SpringBoot进制转换规则问题

1.填写yml文件 dataSource:driver-class-name: com.mysql.jdbc.Driver789password: 01272.测试类 package com.forever;import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Value; import org.springframework.boot.test.context.Spri…...

12.输入一个小于1000的整数,输出平方根(不是整数,输出整数部分)

#include<stdio.h> #include<math.h>int fun(int n){int b;b pow(n,0.5);printf("%d",b);}int main(){int n;scanf("%d",&n); fun(n);return 0;}...

Django框架的推导

文章目录 Web应用简介什么是Web框架&#xff1f;什么是Web&#xff1f;应用程序的两种模式Web应用程序的优缺点 手写Web框架HTTP协议的相关知识1.四大特性2.请求数据格式3.响应数据格式 手写框架 使用wsgiref模块基于wsgiref模块搭建Web框架(最初版)基于wsgiref模块搭建Web框架…...

广东开放大学:电大搜题助力学子迎考利器

近年来&#xff0c;广东开放大学一直致力于为广大学子提供优质的教育资源和学习服务。作为一所专注于远程教育的学府&#xff0c;广东开放大学不仅拥有雄厚的师资力量和丰富的教育经验&#xff0c;还致力于创新教学手段&#xff0c;为学生提供更便捷、高效的学习体验。在这个信…...

linux 7za 编译安装

本文主要介绍了在linux下安装7z命令的方法&#xff0c;同时介绍了7z命令的使用。7z压缩格式拥有众多优点&#xff0c;具有极高的压缩比率 wget https://zenlayer.dl.sourceforge.net/project/p7zip/p7zip/16.02/p7zip_16.02_src_all.tar.bz2 tar -xjvf p7zip_16.02_src_all.ta…...

【Edge】微软Edge每次启动自动导入Chrome收藏夹,无法取消“每次启动浏览器时导入浏览数据”功能的解决方法(202311)

写在前面 Edge现在也不管用户体验了吗? 这个BUG都快一个月了&#xff0c;还没见修复&#xff0c;从118.0.2088开始&#xff0c;我是在2023年10月份一次更新后发现的这个BUG&#xff0c;结果社区论坛什么信息都没有&#xff0c;英文也没收到。 Edge的BUG现象 不知道哪次Edge…...

报错RuntimeError: no valid convolution algorithms available in CuDNN

报错信息如下RuntimeError: no valid convolution algorithms available in CuDNN 出现这个问题既不是cuda与cudnn版本不匹配&#xff0c;也不是英伟达显卡驱动需要更新&#xff01;而是因为你的显存过低不能训练&#xff0c;解决办法是使用混精度训练&#xff01;&#xff01…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...