当前位置: 首页 > news >正文

基于指数分布算法的无人机航迹规划-附代码

基于指数分布算法的无人机航迹规划

文章目录

  • 基于指数分布算法的无人机航迹规划
    • 1.指数分布搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用指数分布算法来优化无人机航迹规划。

1.指数分布搜索算法

指数分布算法原理请参考:https://blog.csdn.net/u011835903/article/details/131025569

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得指数分布搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用指数分布算法对航迹评价函数式(7)进行优化。优化结果如下:
在这里插入图片描述
在这里插入图片描述

从结果来看,指数分布算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

相关文章:

基于指数分布算法的无人机航迹规划-附代码

基于指数分布算法的无人机航迹规划 文章目录 基于指数分布算法的无人机航迹规划1.指数分布搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用指数分布算法来优化无人机航迹规划。 …...

vite基础学习笔记:13.Dialog 对话框 (用户注册与登录)

说明:自学做的笔记和记录,如有错误请指正 1. Dialog 对话框组件 目标效果:点击“登录/注册”,弹框 (1)创建全局组件,在官网中查询代码粘贴 (2) 注册和使用全局组件 &a…...

RedisTemplate 使用 pipeline 时需要注意的问题

RedisTemplate 使用 pipeline 时需要注意的问题 RedisTemplate 使用 pipeline 进行批量 set 时,需要把 key 和 value 都转为字节 1. 直接使用 getBytes() 转为字节,在读取数据时,会抛出以下序列化异常 //错误代码 protected void process(…...

uniapp 下载文件到手机

下载后端传递过来的文件 let thil this uni.showLoading({title: 下载中,mask:true }) uni.downloadFile({url: 接口地址, //仅为示例,并非真实的资源header: {"Authorization": token},responseType: blob,success: (res) > {if (res.statusCode 2…...

使用Drupal管理小型项目?试试Docker快速部署Drupal结合内网穿透实现远程访问

🎬 鸽芷咕:个人主页 🔥个人专栏:《Linux深造日志》《C干货基地》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言1. Docker安装Drupal2. 本地局域网访问3 . Linux 安装cpolar4. 配置Drupal公网访问地址5. 公网远程访问Drupal…...

BSP-STM32移植FreeRTOS

在stm32裸机工程中的Middlewares目录添加freeRtos源码 在裸机工程中的main中调用freertos接口...

【Spring】Spring IOCDI(万字详解)

文章目录 1. Spring是什么?2. 认识IOC2.1 传统程序开发1. Main.java2. Car.java3. Framework.java4. Bottom.java5. Tire.java 2.2 分析传统开发2.3 IOC程序开发1. Main.java2. Car.java3. Framework.java4. Bottom.java5. Tire.java 2.4 分析IOC开发2.5 IOC容器优点…...

ts 使用泛型来做类型映射

使用泛型来做类型映射&#xff0c;将对象(或数组)中类型转换为另一个类型 首先&#xff0c;定义一个类型Student // 定义一个类型Studentinterface Student {name: string,age: number}1、把Student的所有属性都变为可空的 type Nullable<T> {[p in keyof T]: T[p] || …...

Compose - 使用 Paging

一、添加依赖 查看官方最新版本 val paging_version "3.2.1" implementation("androidx.paging:paging-runtime:$paging_version") implementation("androidx.paging:paging-compose:$paging_version") 二、定义数据源 PagingSource 是对其它…...

数据结构与算法-(11)---有序表(OrderedList)

&#x1f308;个人主页: Aileen_0v0 &#x1f525;系列专栏:PYTHON学习系列专栏 &#x1f4ab;"没有罗马,那就自己创造罗马~" 目录 知识回顾及总结 有序表的引入 ​编辑 实现有序表 1.有序表-类的构造方法 2.有序表-search方法的实现 3.有序表-add方法的实现…...

佳易王会员管理系统软件如何下载,基本功能有哪些

一、佳易王会员管理软件大众版 部分功能简介&#xff1a; 1、会员信息登记 &#xff1a;可以直接使用手机号登记&#xff0c;也可以使用实体卡片&#xff0c;推荐用手机号即可。 2、会员卡类型 &#xff1a;可以自由设置卡的类型&#xff0c;比如&#xff1a;充值卡、计次卡、…...

docker搭建mysql环境

1. 基础环境 名称描述CentOS 7.6Linux操作系统版本docker 20.10.5docker版本mysql 8.0.29mysql镜像版本 2. 下载安装 使用docker命令下载mysql镜像 [rootzhouwei ~]# docker pull mysql:8.0.29查看docker仓库是否已经下载了mysql镜像 [rootzhouwei ~]# docker images将mys…...

优思学院|推行精益六西格玛困难重重?7大原因分析助你避坑

六西格玛&#xff0c;是一种让企业在绩效管理的舞台上跳得更高更远的方法。它不仅仅是一套原则和技术&#xff0c;更是一种对完美的执着追求。 在这个舞台上&#xff0c;企业的流程管理得以严格、集中&#xff0c;质量得以高效提升。优思学院总结出六西格玛的核心是&#xff1…...

四川思维跳动商务信息咨询有限公司可信吗?

在今天的数字化时代&#xff0c;抖音带货已成为一种全新的商业模式。许多公司都在通过这种形式进行产品推广和销售&#xff0c;其中&#xff0c;四川思维跳动商务信息咨询有限公司以其专业的服务和良好的信誉&#xff0c;在抖音带货领域赢得了广泛赞誉。 四川思维跳动商务信息…...

高防CDN与高防服务器:谁更胜一筹?

在当今数字化世界中&#xff0c;网络安全对于保护网站和应用程序至关重要。在这一背景下&#xff0c;高防CDN和高防服务器是两种流行的解决方案&#xff0c;用于应对不同类型的网络攻击。本文将分析高防CDN是否能够替代高防服务器&#xff0c;以及它们各自的优势和限制。 高防C…...

2.Netty简单应用

引入Maven依赖 <dependency> <groupId>io.netty</groupId> <artifactId>netty-all</artifactId><version>4.1.49.Final</version> </dependency>服务端的管道处理器 public class NettyServerHandler extends ChannelInbou…...

80个10倍提升Excel技能的ChatGPT提示

你是否厌倦了在使用Excel时感觉像个新手&#xff1f;你是否想将你的技能提升到更高的水平&#xff0c;成为真正的Excel大师&#xff1f;嗯&#xff0c;如果你正在使用ChatGPT&#xff0c;那么成为Excel专家简直易如反掌。 你只需要了解一些最有用的Excel提示&#xff0c;就能在…...

jenkins结合k8s部署动态slave

1、完成k8s连接 在完成jenkins的部署后现安装kubernets的插件 如果jenkins 是部署在k8s集群中只需要填写一下 如果是非本集群的部署则需要填写证书等 cat ./config echo ‘certificate-authority-data-value’ | base64 -d > ./ca.crt echo ‘client-certificate-data’ |…...

搜索引擎Elasticsearch基础与实践

倒排索引 将文档中的内容分词&#xff0c;然后形成词条。记录每条词条与数据的唯一表示如id的对应关系&#xff0c;形成的产物就是倒排索引&#xff0c;如下图&#xff1a; ElasticSearch数据的存储和搜索原理 这里的索引库相当于mysql中的database。一个文档&#xff08;do…...

vue项目electron打包

1.设置国内镜像 npm config edit 命令行输入后会弹出npm的配置文档&#xff0c;需要文档末尾加入 electron_mirrorhttps://npm.taobao.org/mirrors/electron/ electron-builder-binaries_mirrorhttps://npm.taobao.org/mirrors/electron-builder-binaries/ 2.全局安装electron …...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...