当前位置: 首页 > news >正文

深度学习读取txt训练数据绘制参数曲线图的方法

有一些深度学习模型是并不像yolo系列那样最终输出相应的参数图,有很多训练形成了一个训练log文件,于是需要读取log文件中的内容并绘制成曲线图。

如下实例,有一个log文件的部分截图,需要将其读取出来并绘制曲线图

 废话不多说,直接上代码

import os 
import re
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
txt_dir = 'D:/TEST/train.log'  # 文件路径
# 读取文件内容
with open(txt_dir, "r") as f:data = f.read()# print(data)
# 利用正则匹配出相应的数据并提取
epoch_num = re.findall("Epoch (.*) Train", data)
# print(epoch_num)  
Loss_MSE_MAE = re.findall("Train, (.*), Cost", data) # 由于找不到合适的正则条件,于是先取出来一整行数据后续重新正则匹配
# print(Loss_MSE_MAE)
Loss = []
MSE = []
MAE = []
for info in Loss_MSE_MAE:# print(info)Loss_num = re.findall("Loss: (.*), MSE", info)MSE_num = re.findall("MSE: (.*) MAE", info)MAE_num = re.findall("MAE: (.*)", info)# print(Loss_num, '/n', MSE_num,'/n', MAE_num)Loss.append(Loss_num[0])MSE.append(MSE_num[0])MAE.append(MAE_num[0])
# print(Loss, MSE, MAE)
# 将列表中数字的引号去掉生成参数列表
Loss = str(Loss).replace("'","")
Loss = Loss.replace("[", "").replace("]", "").split(", ")
Loss = [float(d) for d in Loss]MSE = str(MSE).replace("'","")
MSE = MSE.replace("[", "").replace("]", "").split(", ")
MSE = [float(d) for d in MSE]MAE = str(MAE).replace("'","")
MAE = MAE.replace("[", "").replace("]", "").split(", ")
MAE = [float(d) for d in MAE]
# print(Loss, MSE, MAE)# 开始画图,前面我们得到了epoch,这将作为横坐标,得到了Loss, MSE, MAE等参数,将用于画图
# 下面是同时生成三张图的方法,可以参考
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(30, 6), dpi=300)
y_data = [Loss[2:], MSE[2:], MAE[2:]]
colors = ['red', 'green', 'blue']
line_style = ['-', '-', '-']
y_labels = ['Loss', 'MSE', 'MAE']
for i in range(3):# axs[i].plot(epoch_num[2:300], y_data[i], c = colors[i], label = y_labels[i], linestyle = line_style[i]) # 横坐标加了epoch太长axs[i].plot(y_data[i], c = colors[i], label = y_labels[i], linestyle = line_style[i]) # 所以不要了epoch,横坐标自动调整# axs[i].scatter(epoch_num[2:], y_data[i], c = colors[i])  # 每个epoch节点对应的数据axs[i].legend(loc='best') # legend图例,用于说明每条曲线的文字显示axs[i].set_yticks(range(0, 150, 5))  # set_yticks用于设置y刻度列表# axs[i].grid(True, linestyle='--', alpha=0.5)  # grid用于设置网格线外观axs[i].set_xlabel("epoch_num", fontdict={'size': 8})  # set_xlabel用于设置x轴标题  axs[i].set_ylabel(y_labels[i], fontdict={'size': 8}, rotation=90)  # set_ylabel用于设置y轴标题,rotation表示旋转90度axs[i].set_title("train_metric_{}".format(y_labels[i]), fontdict={'size': 8})
fig.autofmt_xdate()  # 改变x轴坐标的显示方法可以斜着表示,不用平着挤一堆
plt.savefig('D:/TEST/train_metric_map.png', bbox_inches='tight', pad_inches=0.0, dpi=300)
# plt.show()

最终得到图像如下

相关文章:

深度学习读取txt训练数据绘制参数曲线图的方法

有一些深度学习模型是并不像yolo系列那样最终输出相应的参数图,有很多训练形成了一个训练log文件,于是需要读取log文件中的内容并绘制成曲线图。 如下实例,有一个log文件的部分截图,需要将其读取出来并绘制曲线图 废话不多说&…...

VB.NET—DataGridView控件教程详解

目录 前言: 过程: 第一步: 第二步: 第三步: 第四步: 第五步: 番外篇: 总结: 前言: DataGridView是.NET FormK中的一个Windows窗体控件,它提供了一个可视化的表格控件,允许用户以表格形式显示和编辑数据。它通常用于显示和编辑数据库…...

MCU测试科普|如何进行MCU芯片测试,具体流程是什么?

MCU芯片测试系统是一种专门用于检测MCU芯片性能和质量的综合性设备。它通常由硬件和软件两部分组成,硬件包括测试仪器、适配器、测试夹具等,用于连接被测MCU芯片和测试机,实现高效高精度的测试。软件部分通常包括测试程序、测试管理软件等&am…...

单向循环代码实现cpp

// 单向循环链表 class CircleLink { public:CircleLink(){head_ new Node();tail_ head_;head_->next_ head_;}~CircleLink(){Node* p head_->next_;while (p ! head_){head_->next_ p->next_;delete p;p head_->next_;}delete head_;}public:// 尾插法 …...

【原创】java+jsp+servlet简单图书管理系统设计与实现

摘要: 图书管理系统是一个专门针对图书馆管理而设计的系统,它可以帮助图书管理员有效的对图书进行管理,在图书管理系统的设计中,首先要考虑的是系统的需求分析,该系统的设计与实现涉及多个方面,包括数据库…...

JVM之jinfo虚拟机配置信息工具

jinfo虚拟机配置信息工具 1、jinfo jinfo(Configuration Info for Java)的作用是实时地查看和调整虚拟机的各项参数。 使用jps -v 可以查看虚拟机启动时显示指定的参数列表,但是如果想知道未被显示指定的参数的系统默认值,除 …...

软件测试|PO设计模式在 UI 自动化中的实践

PO的思想最早是2013年由IT大佬Martin Flower提出的:https://martinfowler.com/bliki/PageObject.html 没错,就是他 — 没错,就是他 — 在他的文章里有这样一张经典样图,图片中展示了测试代码中直接操作HTML元素和使用PO模式将page对象封装成…...

如何上传自己的Jar到Maven中央仓库

在项目开发过程中,我们常常会使用 Maven 从仓库拉取开源的第三方 Jar 包。本文将带领大家将自己写好的代码或开源项目发布到 Maven中央仓库中,让其他人可以直接依赖你的 Jar 包,而不需要先下载你的代码后 install 到本地。 注册帐号 点击以…...

智能井盖传感器功能,万宾科技产品介绍

在国家治理方面,对社会的治理是一个重要的领域,一定要在推进社会治理现代化过程中提高市政府的管理和工作能力,推动社会拥有稳定有序的发展。在管理过程中对全市井盖进行统一化管理,可能是市政府比较头疼的难题,如果想…...

洛谷P4185 离线+并查集

好题&#xff0c;发现没有强制在线&#xff0c;可以离线操作 排序之后带集合点数的并查集就好了 #include<bits/stdc.h> using namespace std; const int N 1e510; int n,m; int p[N],sz[N];int find(int x){if(x!p[x])p[x] find(p[x]);return p[x]; } struct Node{in…...

遇到java.security.AccessControlException:access denied怎么办?

今天工作中遇到了如下报错&#xff0c;记录一下解决方案。 目录 问题 分析 结论 问题 这个问题出现在openjdk8启动网页端Java应用。 Java Exception:java.security.AccessControlException:access denied("java.net.SocketPermission""22.188.130.11:9000…...

c++对接CAT1400

最近工作中遇到需要对接1400协议,网上搜索不到c/c++的实现,所以记录一下自己的实现。 第一步注册: 1400是在http摘要认证的基础上做的,所以要去了解http摘要认证的流程 说明: 1.视图库通过用户分配,手动分配username,password给三方对接程序 2.三方对接程序第一次请求由…...

Linux基础【Linux知识贩卖机】

偶尔的停顿和修整&#xff0c;对于人生是非常必要的。 --随记 文章目录 Linux目录目录结构磁盘分区相关命令 相对路径和绝对路径 文件权限用户分类umask创建文件权限计算方法粘滞位 总结 Linux目录 目录结构 Linux 操作系统采用了一种层次化的目录结构&#xff0c;常被称为标…...

CSS 边框、轮廓线

一、CSS边框&#xff1a; CSS边框属性允许指定一个元素边框的样式和颜色。 1&#xff09;、边框样式&#xff1a;border-style属性用来定义边框的样式&#xff0c;border-style值&#xff1a; 2&#xff09;、边框宽度&#xff1a;border-width属性用于指定边框宽度。指定变宽…...

Transformer架构 完整的处理流程

Transformer 是由多层的 Encoder 和 Decoder 构成的。每一层的 Encoder 和 Decoder 都包含了多头自注意力机制&#xff08;Multi-head Self Attention&#xff09;、前馈神经网络&#xff08;Feed Forward&#xff09;和添加及归一化&#xff08;Add & Norm&#xff09;。特…...

git and svn 行尾风格配置强制为lf

git CLI配置&#xff1a; // 提交时转换为LF&#xff0c;检出时转换为CRLF git config --global core.autocrlf true // 提交时转换为LF&#xff0c;检出时不转换 git config --global core.autocrlf input // 提交检出均不转换 git config --global core.autocrlf f…...

达梦数据库答案

1、 创建数据库实例&#xff0c;到/dm8/data下&#xff0c;数据库名&#xff1a;DEMO&#xff0c;实例名DEMOSERVER&#xff08;10分&#xff09; [dmdbadmServer ~]$ cd /dm8/tool [dmdbadmServer tool]$ ./dbca.sh1、 簇大小32&#xff0c;页大小16&#xff0c;登录密码&…...

基于SSM的楼房销售系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…...

Blender做一个小凳子学习笔记

文章目录 创建椅座椅子腿靠背渲染 本文是这个B站视频的学习笔记&#xff1a;【Blender】爆肝两个月&#xff01;拜托三连了&#xff01;这绝对是全B站最用心的&#xff08;没有之一&#xff09;Blender 3D建模零基础入门 创建椅座 首先&#xff0c;需要了解其左上角和右上角的…...

Maven简介

一、Maven模型 二、模型实现 三、对应代码项目介绍...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

PH热榜 | 2025-06-08

1. Thiings 标语&#xff1a;一套超过1900个免费AI生成的3D图标集合 介绍&#xff1a;Thiings是一个不断扩展的免费AI生成3D图标库&#xff0c;目前已有超过1900个图标。你可以按照主题浏览&#xff0c;生成自己的图标&#xff0c;或者下载整个图标集。所有图标都可以在个人或…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)

目录 &#x1f50d; 若用递归计算每一项&#xff0c;会发生什么&#xff1f; Horners Rule&#xff08;霍纳法则&#xff09; 第一步&#xff1a;我们从最原始的泰勒公式出发 第二步&#xff1a;从形式上重新观察展开式 &#x1f31f; 第三步&#xff1a;引出霍纳法则&…...

如何通过git命令查看项目连接的仓库地址?

要通过 Git 命令查看项目连接的仓库地址&#xff0c;您可以使用以下几种方法&#xff1a; 1. 查看所有远程仓库地址 使用 git remote -v 命令&#xff0c;它会显示项目中配置的所有远程仓库及其对应的 URL&#xff1a; git remote -v输出示例&#xff1a; origin https://…...