EM@比例恒等式@分式恒等式
文章目录
- 比例恒等式(分式恒等式)
- 分式等式链
- 例
比例恒等式(分式恒等式)
-
设 a b = c d \frac{a}{b}=\frac{c}{d} ba=dc
(0)
令这个比值为 k k k,则 a = k b a=kb a=kb(0-1)
, c = k d c=kd c=kd(0-2)
,以下恒等式在表达式有意义的情形下成立(例如分母不为0) -
合比定理: a + b b = c + d d \frac{a+b}{b}=\frac{c+d}{d} ba+b=dc+d
(1)
- 对式(0)两边同时加 1 1 1,得 a b + 1 = c d + 1 \frac{a}{b}+1=\frac{c}{d}+1 ba+1=dc+1,通分得式(1)
-
分比定理: a − b b = c − d d \frac{a-b}{b}=\frac{c-d}{d} ba−b=dc−d
(2)
- 对式(0)两边同时减1,得式(2)
- 也可以由合比定理将 b b b用 − b -b −b代替得到
-
合分比定理: a + b c − b = c + d c − d \frac{a+b}{c-b}=\frac{c+d}{c-d} c−ba+b=c−dc+d
(3)
- 由式(1)比去式(2),即得(3)
-
a c \frac{a}{c} ca= b d \frac{b}{d} db
(4)
- 将(0-1,0-2)得 a c \frac{a}{c} ca= k b k d \frac{kb}{kd} kdkb= b d \frac{b}{d} db
-
若 a + c b + d = k \frac{a+c}{b+d}=k b+da+c=k,即 a b = c d \frac{a}{b}=\frac{c}{d} ba=dc= a + c b + d \frac{a+c}{b+d} b+da+c= k k k
(5)
- 由(0-1,0-2),得 a + c b + d \frac{a+c}{b+d} b+da+c= k ( b + d ) b + d \frac{k(b+d)}{b+d} b+dk(b+d)= k k k
分式等式链
-
推广:若 a 1 b 1 \frac{a_1}{b_1} b1a1= ⋯ \cdots ⋯= a n b n \frac{a_n}{b_n} bnan= k k k,则 ∑ i = 1 n a i ∑ i = 1 n b i \frac{\sum_{i=1}^{n}a_{i}}{\sum_{i=1}^{n}b_{i}} ∑i=1nbi∑i=1nai= k k k
(6)
-
设 I = { 1 , 2 , ⋯ , n } I=\set{1,2,\cdots,n} I={1,2,⋯,n}, S S S是从 I I I中任意选出 m m m个元素构成的几何 ( m ∈ [ 1 , n ] , m ∈ N + ) (m\in{[1,n]},m\in\mathbb{N_{+}}) (m∈[1,n],m∈N+),都有 ∑ i ∈ S a i ∑ i ∈ S b i \Large{\frac{\sum_{i\in S}a_{i}}{\sum_{i\in{S}}b_{i}}} ∑i∈Sbi∑i∈Sai= k k k
(6-1)
-
∑ i ∈ S k i a i ∑ i ∈ S k i b i \Large{\frac{\sum_{i\in S}k_{i}a_{i}}{\sum_{i\in{S}}k_{i}b_{i}}} ∑i∈Skibi∑i∈Skiai= k k k,
(6-2)
其中 k i ∈ { − 1 , 1 } k_i\in\set{-1,1} ki∈{−1,1}- 因为 a i b i = − a i − b i \frac{a_{i}}{b_{i}}=\frac{-a_{i}}{-b_{i}} biai=−bi−ai= k k k,再由结论(5),可知结论(6-2)成立
-
例
- 设 y x = y + z x + z \frac{y}{x}=\frac{y+z}{x+z} xy=x+zy+z= k k k,则 k = 1 k=1 k=1
- 由性质(5), y x \frac{y}{x} xy= y + z − y x + z − x \frac{y+z-y}{x+z-x} x+z−xy+z−y= z z \frac{z}{z} zz=1;所以 k = 1 k=1 k=1,即 x = y x=y x=y
- 方法2: y = k x y=kx y=kx; y + z = k x + k z y+z=kx+kz y+z=kx+kz,联立得 k = 1 k=1 k=1,即 x = y x=y x=y
相关文章:
EM@比例恒等式@分式恒等式
文章目录 比例恒等式(分式恒等式)分式等式链例 比例恒等式(分式恒等式) 设 a b c d \frac{a}{b}\frac{c}{d} badc(0)令这个比值为 k k k,则 a k b akb akb(0-1), c k d ckd ckd(0-2),以下恒等式在表达式有意义的情形下成立(例如分母不为0) 合比定理: a b b c d d \f…...

使用米联客FPGA开发板进行光口开发时遇到的问题总结
使用的开发板型号:米联客MA703FA, 实物图如下 FPGA型号为a35t 米联客提供的开发板资料中的FPGA型号为a100,所以要想使用开发板例程必须进行FPGA的重新选择。如下图 通过对开发板原理图的分析,例程代码不用做任何修改就可使用&am…...
【chat】 1:Ubuntu 20.04.3 编译安装moduo master分支
muduo 基于reactor反应堆模型的多线程C++网络库大佬的官方仓库有cpp17分支看了下cmakelist文件里面还是要依赖不少库,比如boost protobuf而且cpp17 似乎 是2021年的master 是2022更新的那么还是选择master吧。ubuntu版本 Ubuntu 20.04.3 root@k8s-master-2K4G:~# uname -a Lin…...

C#基于inpoutx64读写ECRAM硬件信息
inpoutx64.dll分享路径: 链接:https://pan.baidu.com/s/1rOt0xtt9EcsrFQtf7S91ag 提取码:7om1 1.InpOutManager: using System; using System.Collections.Generic; using System.Linq; using System.Runtime.InteropServi…...

图论13-最小生成树-Kruskal算法+Prim算法
文章目录 1 最小生成树2 最小生成树Kruskal算法的实现2.1 算法思想2.2 算法实现2.2.1 如果图不联通,直接返回空,该图没有mst2.2.2 获得图中的所有边,并且进行排序2.2.2.1 Edge类要实现Comparable接口,并重写compareTo方法 2.2.3 取…...

免费博客搭建笔记
title: 免费博客搭建笔记 tags: 博客搭建 本次是对自己在网上学习github搭建一个 👇个人免费静态网站的总结当然不是很完美👇 Bow to the new king iYANG (yangsongl1n.github.io) 接着我会从我的写笔记的个人习惯来逐步介绍如何搭建这个网站 1.写笔…...

网络运维Day10
文章目录 SHELL基础查看有哪些解释器使用usermod修改用户解释器BASH基本特性 shell脚本的设计与运行编写问世脚本脚本格式规范执行shell脚本方法一方法二实验 变量自定义变量环境变量位置变量案例 预定义变量 变量的扩展运用多种引号的区别双引号的应用单引号的应用反撇号或$()…...
@Cacheable 注解的 @CacheManager 示例
pom.xml 依赖包: <dependency><groupId>org.springframework.data</groupId><artifactId>spring-data-redis</artifactId></dependency><dependency><groupId>redis.clients</groupId><artifactId>jed…...
springboot二维码示例
pom.xml依赖 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.16</version></dependency><dependency><groupId>com.google.zxing</groupId><artifactId>…...

nacos做服务配置和服务器发现
一、创建项目 1、创建一个spring-boot的项目 2、创建三个模块file、system、gateway模块 3、file和system分别配置启动信息,并且创建一个简单的控制器 server.port9000 spring.application.namefile server.servlet.context-path/file4、在根目录下引入依赖 <properties&g…...

KCC@广州与 TiDB 社区联手—广州开源盛宴
10月21日,KCC广州与 TiDB 社区联手,在海珠区保利中悦广场 29 楼召开了一次难忘的开源盛宴。这不仅仅是 KCC广州的又一次线下见面,更代表着与 TiDB 社区及广州技术社区的首次深度合作。 活动的策划与组织由 KCC广州负责人 - 惠世冀、PingCAP 的…...

CSS3 分页、框大小、弹性盒子
一、CSS3分页: 网站有很多个页面,需要使用分页来为每个页面做导航。示例: <style> ul.pagination { display: inline-block; padding: 0; margin: 0; } ul.pagination li {display: inline;} ul.pagination li a { color: black; f…...
GEE问题——GEE中循环的使用map()函数,以提取指定范围内的逐日的二氧化氮平均浓度为例
问题: 我有一个简单的代码,可以帮助计算德克萨斯州每个县的对流层二氧化氮平均浓度。目前,我可以将其导出为我指定的任何日期范围的 csv 表,但我想 1) 提取每天平均值,例如 3 个月(2020 年 3 月至 2020 年 5 月,约 90 天)--手动多次运行肯定不是办法,而且我的编码技…...

短信验证码实现(阿里云)
如果实现短信验证,上教程,这里用的阿里云短信服务 短信服务 (aliyun.com) 进入短信服务后开通就行,可以体验100条免费,刚好测试用 这里由自定义和专用,测试的话就选择专用吧,自定义要审核, Se…...
如何对element弹窗进行二次封装
方式一使用$refs 个人比较喜欢用这种的 通过$refs打开的同时 还能给弹窗组件传参 一些框架使用的也是这种方式 父组件 <template><div><el-button type"text" click"handleDialogOpen">打开嵌套表单的 Dialog</el-button><Dia…...

【微服务专题】手写模拟SpringBoot
目录 前言阅读对象阅读导航前置知识笔记正文一、工程项目准备1.1 新建项目1.1 pom.xml1.2 业务模拟 二、模拟SpringBoot启动:好戏开场2.1 启动配置类2.1.1 shen-base-springboot新增2.1.2 shen-example客户端新增启动类 三、run方法的实现3.1 步骤一:启动…...

七个优秀微服务跟踪工具
随着微服务架构复杂性的增加,在问题出现时确定问题的根本原因变得更具挑战性。日志和指标为我们提供了有用的信息,但并不能提供系统的完整概况。这就是跟踪的用武之地。通过跟踪,开发人员可以监控微服务之间的请求进度,从而使他们…...
redis 问题解决 1
1.1 常见考点 1、Redis 为何这么快? Redis 是一款基于内存的数据结构存储系统,它之所以能够提供非常快的读写性能,主要是因为以下几个方面的原因: 基于内存存储:Redis 所有的数据都存储在内存中,而内存的访问速度比磁盘要快得多。因此,Redis 可以提供非常快的读写性能…...
odoo16前端框架源码阅读——启动、菜单、动作
odoo16前端框架源码阅读——启动、菜单、动作 目录:addons/web/static/src 1、main.js odoo实际上是一个单页应用,从名字看,这是前端的入口文件,文件内容也很简单。 /** odoo-module **/import { startWebClient } from "…...

C/C++(a/b)*c的值 2021年6月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析
目录 C/C(a/b)*c的值 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C(a/b)*c的值 2021年6月 C/C编程等级考试一级编程题 一、题目要求 1、编程实现 给定整数a、b、c,计算(a / b)*c的值&…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...