当前位置: 首页 > news >正文

测量 R 代码运行时间的 5 种方法

简介

平常在撰写论文时,会需要比较算法之间的计算时间。本篇文章给出几种测量 R 代码运行时间的方法。本文是小编学习过程中的笔记,主要参考博客1,2。

1. 使用 Sys.time()

小编通常使用 Sys.time() 函数来计算时间。首先记录当前运行时刻,之后运行代码,并记录运行完成时刻的时间。最后将两者时间相减即可。下面给出一个例子:

myfunction <- function() { 
Sys.sleep(10) #系统休息 
}start_time <- Sys.time() # 记录初始时间
myfunction() # 运行你的代码
end_time <- Sys.time() # 记录终止时间end_time - start_time # 计算时间差
# Time difference of 10.00363 secs

2. 使用 toctoc 包

函数 tic()toc() 的使用方式与前面演示的 Sys.time() 类似。但是 toctoc 包更加方便。下面给出例子:

读者可以从 GitHub 或者 CRAN 上安装:

# CRAN
install.packages("tictoc")
# GitHub
library(devtools); devtools::install_github("collectivemedia/tictoc")

计算单个代码块

library(tictoc)
tic("sleeping")
print("falling asleep...")
sleep_for_a_minute()
print("...waking up")
toc()
# [1] "falling asleep..."
# [1] "...waking up"
# sleeping: 11.076 sec elapsed

嵌套多个计时器,注意这里的第一个 tic() 对应最后一个 toc()

tic("total")  #对应最后一个toc()
tic("data generation")
X <- matrix(rnorm(50000*1000), 50000, 1000)
b <- sample(1:1000, 1000)
y <- runif(1) + X %*% b + rnorm(50000)
toc()
tic("model fitting")
model <- lm(y ~ X)
toc()
toc()
# data generation: 3.383 sec elapsed
# model fitting: 42.452 sec elapsed
# total: 46.428 sec elapsed

3. 使用 system.time()

这个使用方式类似 Sys.time(),我们继续以 myfunction() 作为例子:

system.time({ myfunction() })
#  user    system  elapsed 
#  0.039   0.044   10.001

4. 使用 rbenchmark

该包中的 microbenchmark() 函数可以进行精确的测量和比较 R 表达式的执行时间。它提供了更准确的结果,可以替代 system.time() 使用。

可以通过 CRAN 或者 GitHub 安装:

# CRAN
install.packages("rbenchmark")
# GitHub
devtools::install_github("eddelbuettel/rbenchmark")

这里展示R-bloggers中的例子:使用三个计算方法比较计算线性回归系数所需的时间:

library(rbenchmark)benchmark("lm" = {X <- matrix(rnorm(1000), 100, 10)y <- X %*% sample(1:10, 10) + rnorm(100)b <- lm(y ~ X + 0)$coef},"pseudoinverse" = {X <- matrix(rnorm(1000), 100, 10)y <- X %*% sample(1:10, 10) + rnorm(100)b <- solve(t(X) %*% X) %*% t(X) %*% y},"linear system" = {X <- matrix(rnorm(1000), 100, 10)y <- X %*% sample(1:10, 10) + rnorm(100)b <- solve(t(X) %*% X, t(X) %*% y)},replications = 1000,columns = c("test", "replications", "elapsed","relative", "user.self", "sys.self"))#           test   replications elapsed relative user.self sys.self
# 3 linear system         1000   0.064    1.000     0.062    0.001
# 1            lm         1000   0.281    4.391     0.267    0.011
# 2 pseudoinverse         1000   0.082    1.281     0.079    0.002

观察 elapsed 的结果,可以看到 lm 方法计算时间是最长的。

注意:读者想使用该包进行计算时间,需要按照文章的形式,将自己的代码填入即可。

5. microbenchmark

该包是 rbenchmark 包的升级版本,不仅可以给出上面的结果,还能通过可视化的方式展示结果。

可以通过 CRAN 或者 GitHub 安装:

# CRAN
install.packages("microbenchmark")
# GitHub
remotes::install_github("joshuaulrich/microbenchmark")

该函数能够使用用户指定函数自动检查基准表达式的结果。我们再次比较三种计算线性模型系数向量的方法(重复运行了100次)。

library(microbenchmark)set.seed(2017)
n <- 10000
p <- 100
X <- matrix(rnorm(n*p), n, p)
y <- X %*% rnorm(p) + rnorm(100)check_for_equal_coefs <- function(values) {tol <- 1e-12  # 添加基准max_error <- max(c(abs(values[[1]] - values[[2]]),abs(values[[2]] - values[[3]]),abs(values[[1]] - values[[3]])))max_error < tol
}mbm <- microbenchmark("lm" = { b <- lm(y ~ X + 0)$coef },"pseudoinverse" = {b <- solve(t(X) %*% X) %*% t(X) %*% y},"linear system" = {b <- solve(t(X) %*% X, t(X) %*% y)},times = 100, #重复运行了100次check = check_for_equal_coefs) # 添加自通检查的标准mbm
# Unit: milliseconds
#           expr      min        lq      mean    median        uq      max neval cld
#             lm 96.12717 124.43298 150.72674 135.12729 188.32154 236.4910   100   c
#  pseudoinverse 26.61816  28.81151  53.32246  30.69587  80.61303 145.0489   100  b
#  linear system 16.70331  18.58778  35.14599  19.48467  22.69537 138.6660   100 a

注意:我们使用函数参数检查来检查三种方法返回的结果的相等性(最大误差为1e-12)。如果结果不相等,则 microbenchmark 将返回错误消息。

值得一提的是,该包还整合了 ggplot2 来绘制以上结果。你只需要使用 autoplot() 即可实现:

library(ggplot2)
autoplot(mbm)

小编有话说

本推文给出了 5 种计算代码时间的方法。如果只是简单的使用,通常小编采用第一种方法。如果需要比较不同结果,并绘图。最后一种方法或许是更好的选择。

科研相关问题可见:

相关文章:

测量 R 代码运行时间的 5 种方法

简介 平常在撰写论文时&#xff0c;会需要比较算法之间的计算时间。本篇文章给出几种测量 R 代码运行时间的方法。本文是小编学习过程中的笔记&#xff0c;主要参考博客1&#xff0c;2。 1. 使用 Sys.time() 小编通常使用 Sys.time() 函数来计算时间。首先记录当前运行时刻&…...

Qt 第9课、计算器中缀转后缀算法

计算器核心算法&#xff1a; 1、将中缀表达式进行数字和运算符的分离 2、将中缀表达式转换成后缀表达式 3、通过后缀表达式计算最后的结果 二、计算器中缀转后缀算法 计算器中缀转后缀算法的意义在于把中缀表达式转换成后缀表达式&#xff0c;能够更好地计算 算法的基本思路…...

docker的使用方法

docker技术 同一个操作系统内跑多套不同版本依赖的业务 docker可以使同一个物理机中进程空间&#xff0c;网络空间&#xff0c;文件系统空间相互隔绝 虚拟机弊端&#xff1a;每个需要安装操作系统&#xff0c;太重量级&#xff0c;资源需要提前分配好 部署程序 开发环境 win…...

Kafka(五)生产者向发送消息的执行流程

&#xff08;1&#xff09;生产者要往 Kafka 发送消息时&#xff0c;需要创建 ProducerRecoder,代码如下&#xff1a; ProducerRecord<String,String> record new ProducerRecoder<>("CostomerCountry","Precision Products","France&q…...

华为OD机试模拟题 用 C++ 实现 - 简易压缩算法(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 最多获得的短信条数(2023.Q1)) 文章目录 最近更新的博客使用说明简易压缩算法题目输入输出示例一输入输出说明示例二输入输出说明示例三输入输出说明...

MATLAB R2022b 安装教程

MATLAB R2022b 安装教程MathWorks 于2022年9月发布了 MATLAB 和 Simulink 产品系列的最新版本 Matlab R2022b版本 &#xff0c;加入两个新产品&#xff1a; Medical Imaging Toolbox — 可视化、配准、分割和标注二维及三维医学图像Simscape Battery — 设计和仿真电池和储能系…...

PCI子系统

很多网络接口卡都是外围组件互联&#xff08;Peripheral Compaonent Interconnect&#xff09;设备&#xff0c;必须与Linux PCI子系统协同工作&#xff0c;并非所有的网络接口都是PCI设备&#xff0c;很多嵌入式设备的网络接口连接的就不是PCI总线&#xff0c;这些设备的初始化…...

Spring源码之IoC容器的Bean创建和依赖注入,DefaultListableBeanFactory容器为例

接上篇Spring源码之IoC容器初始化过程&#xff0c;以FileSystemXmlApplicationContext容器为例 因为FileSystemXmlApplicationContext使用的容器为DefaultListableBeanFactory&#xff0c;所以该篇基于DefaultListableBeanFactory的实现分析依赖注入过程。 目录获取Bean的总体流…...

解决小程序页面scroll-view块自身滑动问题

修改scroll-view的style样式 本来通过函数限制高度 style"margin-top:200rpx;"height: calc(100vh - 200rpx - env(safe-area-inset-bottom));会出现整个scroll-view块位置不固定滑动里面的内容后&#xff0c;自己本身在整个页面内上移&#xff0c;将样式改为&#…...

PowerCommand康明斯发电机控制屏维修HMI211

康明斯柴油发电机的监控系统分为普通机组控制屏和智能化机组控制界面。普通操作界面实用于普通的康明斯柴油发电机的控制&#xff0c;康明斯柴油发电机的起动与停止、供电与断电、状态调整等均由手动操作&#xff1b;自动化康明斯柴油发电机控制系统适合于智能化康明斯柴油发电…...

ELK + Kafka 测试

配置file beat输出到 Kafkalogstash服务器从kafka获取数据并输出到es集群在es集群上查看索引kibana界面添加索引查看数据1.配置file beat输出到 Kafka 1.1 Filebeat机器配置数据采集和输出目标 做好域名解析 # vim /usr/local/filebeat/filebeat.yml # 修改输出目标为kafka…...

迁移系统:换电脑或者硬盘转移磁盘文件的方法!

为什么要将操作系统迁移到新驱动&#xff1f; “将操作系统转移到新驱动您好&#xff0c;我刚刚为我的台式机订购了一个新的2TB希捷Barracuda硬盘&#xff0c;我想知道如何将我的Windows 10操作系统与我下载的其他一些软件一起转移过来。我使用新的/大的硬盘&#xff0c;然…...

职场性别报告,男女薪酬仍有差距,男性平均薪酬比女性高29.7%

性别是否影响职业&#xff1f;女性求职比男性更加困难&#xff1f;男性薪酬比女性更有优势&#xff1f;人们一说到警察、建筑师通常会想到高大魁梧的男性形象&#xff0c;一说到幼师、护士往往想到的都是温柔的女性形象&#xff0c;职业好似与性别挂钩&#xff1b;女性求职通常…...

5-Azidopentanoic acid,79583-98-5,5-Azidopentanoic COOH具有高效稳定,高特异性

5-Azidopentanoic acid&#xff0c;5-Azidopentanoic COOH&#xff0c;5-叠氮基戊酸产品规格&#xff1a;1.CAS号&#xff1a;79583-98-52.分子式&#xff1a;C5H9N3O23.分子量&#xff1a;143.074.包装规格&#xff1a;1g&#xff0c;5g&#xff0c;10g&#xff0c;包装灵活&a…...

滴滴前端高频react面试题汇总

说说 React组件开发中关于作用域的常见问题。 在 EMAScript5语法规范中&#xff0c;关于作用域的常见问题如下。 &#xff08;1&#xff09;在map等方法的回调函数中&#xff0c;要绑定作用域this&#xff08;通过bind方法&#xff09;。 &#xff08;2&#xff09;父组件传递…...

能在软路由docker给部署搭建teamsperk服务器么?并且设置好ddns

参考链接(4条消息) 【个人学习总结】使用docker搭建Teamspeak服务器_blcurtain的博客-CSDN博客_teamspeak3 docker(⊙﹏⊙)哎呀&#xff0c;崩溃啦&#xff01; (tdeh.top)TeamSpeak服务器搭建与使用 - 缘梦の镇 (cmsboy.cn)Openwrt X86 docker运行甜糖-软路由,x86系统,openwrt…...

应用统计学实验1-蒙特卡罗方法求解定积分

目录 1. 用蒙特卡罗方法计算定积分(随机投点法) 2. 用蒙特卡罗方法计算定积分(平均值法)...

用Pyhon编写一个属于自己的nmap

用Pyhon编写一个属于自己的nmap 文章目录用Pyhon编写一个属于自己的nmap导入 socket 模块&#xff0c;确定目标主机 IP 或域名以及需要扫描的端口列表开始扫描、扫描每个端口创建一个 socket 对象&#xff0c;用于建立 TCP 连接尝试连接目标主机的指定端口如果连接成功&#xf…...

电信网上用户资管理系统的设计与实现

技术&#xff1a;Java、JSP等摘要&#xff1a;在对目前市面上已经拥有的营业厅功能分析和整理后&#xff0c;为了保证营业厅中多种功能的分层次处理设计了一个的电信网上用户自管理系统&#xff0c;以web页面方式实现了与用户的交互&#xff0c;同时保证了移动电话计费管理系统…...

js函数柯里化-面试手写版

概念 用我自己的话来总结一下&#xff0c;函数柯里化的意思就是你可以一次传很多参数给curry函数&#xff0c;也可以分多次传递&#xff0c;curry函数每次都会返回一个函数去处理剩下的参数&#xff0c;一直到返回最后的结果。 实例 这里还是举几个例子来说明一下&#xff1…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

大模型——基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程

基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 下载安装Docker Docker官网:https://www.docker.com/ 自定义Docker安装路径 Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。 新建安装目录:E:\MyS…...

CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)

漏洞概述 漏洞名称&#xff1a;Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号&#xff1a;CVE-2023-25194 CVSS评分&#xff1a;8.8 影响版本&#xff1a;Apache Kafka 2.3.0 - 3.3.2 修复版本&#xff1a;≥ 3.4.0 漏洞类型&#xff1a;反序列化导致的远程代…...

【Java】Ajax 技术详解

文章目录 1. Filter 过滤器1.1 Filter 概述1.2 Filter 快速入门开发步骤:1.3 Filter 执行流程1.4 Filter 拦截路径配置1.5 过滤器链2. Listener 监听器2.1 Listener 概述2.2 ServletContextListener3. Ajax 技术3.1 Ajax 概述3.2 Ajax 快速入门服务端实现:客户端实现:4. Axi…...

[QMT量化交易小白入门]-六十二、ETF轮动中简单的评分算法如何获取历史年化收益32.7%

本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。 QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。 文章目录 相关阅读1. 策略概述2. 趋势评分模块3 代码解析4 木头…...

C++ Saucer 编写Windows桌面应用

文章目录 一、背景二、Saucer 简介核心特性典型应用场景 三、生成自己的项目四、以Win32项目方式构建Win32项目禁用最大化按钮 五、总结 一、背景 使用Saucer框架&#xff0c;开发Windows桌面应用&#xff0c;把一个html页面作为GUI设计放到Saucer里&#xff0c;隐藏掉运行时弹…...

解决MybatisPlus使用Druid1.2.11连接池查询PG数据库报Merge sql error的一种办法

目录 前言 一、问题重现 1、环境说明 2、重现步骤 3、错误信息 二、关于LATERAL 1、Lateral作用场景 2、在四至场景中使用 三、问题解决之道 1、源码追踪 2、关闭sql合并 3、改写处理SQL 四、总结 前言 在博客&#xff1a;【写在创作纪念日】基于SpringBoot和PostG…...

年度峰会上,抖音依靠人工智能和搜索功能吸引广告主

上周早些时候举行的第五届年度TikTok World产品峰会上&#xff0c;TikTok推出了一系列旨在增强该应用对广告主吸引力的功能。 新产品列表的首位是TikTok Market Scope&#xff0c;这是一个全新的分析平台&#xff0c;为广告主提供整个考虑漏斗的全面视图&#xff0c;使他们能够…...