当前位置: 首页 > news >正文

ida81输入密码验证算法分析以及破解思路

本文分析了ida81对输入密码的验证流程,分别对输入密码到生成解密密钥、密码素材的生成过程以及文件数据的加密过程这三个流程进行分析,并尝试找一些可利用的破绽。很遗憾,由于水平有限,目前也只是有个思路未能完全实现,故分享出来抛砖引玉。

1. 密码验证算法

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

proc m4ZQu {password LZQjH} {

    set ::maui::util::H6VeX ""

    set ::maui::util::EL0BW [string repeat \\0 32]

    package require tcltwofish

    package require sha256

    if {[string length $LZQjH] == 0} {

        error "Unable to initialize encryption - missing essential data"

    }

     

    //1.展开payload 获取相关参数

    if {[binary scan $LZQjH Ia16a32a64a32a* times iv passwordKey encryptedKey payloadIVsHash encryptedPayloadIVs] < 6} {

        error "Unable to initialize encryption - header missing or corrupt"

    }

    //2.使用输入的密码计算sha256,然后根据迭代次数times加密passwordkey,最后计算结果的sha256

    set iHcWR [a64bL $password $passwordKey $iv $times]

     

    //3.取上一步中的后32字节

    set BJvoG [string range [tcltwofish::decrypt $iHcWR $encryptedKey] 32 63]

     

    //4.使用上一步中的结果作为key 循环times/64次 解密encryptedPayloadIVs

    //这一步没有指定iv 实际过程为16个字节的0x00

    for {set 0} {$i < $times} {incr i 64} {

        set encryptedPayloadIVs [tcltwofish::decrypt $BJvoG $encryptedPayloadIVs]

    }

    //5.获取32字节后的数据

    set ZQpQw [string range $encryptedPayloadIVs 32 end]

    //6.计算上一步结果的sha256,和预置的hash比对,一致则密码正确

    if {[sha2::sha256 -bin $ZQpQw] != $payloadIVsHash} {

        maui::d_RUj "Invalid payload password"

    }

     

    //7.使用第五步中的结果作为后续选取iv的数据

    set ::maui::util::H6VeX $ZQpQw

    //8.使用第三步中的结果作为密钥

    set ::maui::util::EL0BW $BJvoG

}

在这个过程中,第一步需要的payload为4020字节,这是已知的。意味着可以获取到第六步中正确的hash结果。
然而,根据下面的帖子总结,ida的密码选取字符为58个,密码长度为14个字符,这个测试结果是非常大的。
破密行動: 以不尋常的角度破解 IDA Pro 偽隨機數 | DEVCORE 戴夫寇爾
[下载] ida 8.1-资源下载-看雪-安全社区|安全招聘|kanxue.com

而我在i9-13900K测试从随机生成输入密码到第六步验证hash整个过程,测试一个密码就需要0.045秒。所以手里有超算也不建议直接爆破。

2. 密码素材的生成过程

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

//根据输入密码生成payload

proc yOZ7q {password {times 16000}} {

        set ::maui::util::H6VeX ""

        set ::maui::util::EL0BW [string repeat \\0 32]

        package require tcltwofish

        package require sha256

         

        set BJvoG [qA4kM 32]

        set passwordKey [qA4kM 32]

        set ZQpQw [qA4kM [expr {16 * 256}]]

        set payloadIVsHash [sha2::sha256 -bin $ZQpQw]

        set encryptedPayloadIVs "[qA4kM 32]$ZQpQw"

        for {set 0} {$i < $times} {incr i 64} {

            set encryptedPayloadIVs [tcltwofish::encrypt $BJvoG $encryptedPayloadIVs]

        }

        set iv [qA4kM 16]

        set iHcWR [a64bL $password $passwordKey $iv $times]

         

        set encryptedKey [tcltwofish::encrypt $iHcWR "[qA4kM 32]$BJvoG"]

        set LZQjH [binary format Ia16a32a64a32a* $times $iv $passwordKey $encryptedKey $payloadIVsHash $encryptedPayloadIVs]

        set ::maui::util::H6VeX $ZQpQw

        set ::maui::util::EL0BW $BJvoG

         

        return $LZQjH

    }

//生成随机数据

 proc qA4kM {length} {

        set YKL8w ""

        if {[RLPut unix]} {

            foreach xML4B {/dev/urandom /dev/random} {

                if {[catch {

                    set WyLEv [open $xML4B r]

                    fconfigure $WyLEv -translation binary

                    set YKL8w [read $WyLEv $length]

                    close $WyLEv

                }]} {

                    catch {close $WyLEv}

                }  else  {

                    break

                }

            }

        }  else  {

         

        }

        if {[string length $YKL8w] != $length} {

            incr length -[string length $YKL8w]

            while {$length >= 2} {

                append YKL8w [binary format S [expr {int([maui::util::rand] * 0x10000)}]]

                incr length -2

            }

            if {$length > 0} {

                append YKL8w [binary format c [expr {int([maui::util::rand] * 0x100)}]]

            }

        }

        return $YKL8w

    }

    proc rand {} {

        if {[maui::util::RLPut "windows"] && [info commands ::bitrock::secure::rand_s] != ""} {

            if {[catch {

                set r [::bitrock::secure::rand_s]

            } V77Ls]} {

                maui::util::debug "failed to call rand_s: $V77Ls"

                set r [expr {rand()}]

            }

        else {

            set r [expr {rand()}]

        }

        return $r

    }

继续分析输入密码的时生成payload的算法,根据安装密码生成payload的过程中,很多数据包括最后解密数据用的密钥BJvoG也是随机生成的,如果这部分随机数生成流程能复现那也是可以破解的。仔细看随机数的生成,已经排除了以前的LCG随机数生成算法,换成了更安全的,前后状态无影响的方式,linux或unix下用/dev/random或者/dev/urandom,windows下调用rand_s。
rand_s | Microsoft Learn

3. 文件数据加密流程

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

proc MmyBM {compressionAlgorithm command data} {

        if {[catch {

            //1.压缩数据

            if {($compressionAlgorithm == "lzma") || ($compressionAlgorithm == "lzma-ultra") || ($compressionAlgorithm == "lzham") || ($compressionAlgorithm == "lzham-ultra")} {

                set data [eval [concat $command [list $data]]]

            }  else  {

                set data [vfs::zip -mode compress -nowrap 1 $data]

            }

            //2.1 前面添加四个字节的长度,然后末尾补全32的倍数

            //2.2 前面添加32字节的随机数据

            set data [qA4kM 32][UOijU $data 32

            //3.在H6VeX中截取16字节的iv

            set PG2JA [expr {int([maui::util::rand] * 0x100)}]

            set iv [string range $::maui::util::H6VeX [expr {$PG2JA * 16}] [expr {$PG2JA * 16 + 15}]]

            //4.计算crc32

            set hbA8n [format 0x%08x [expr {[zlib crc32 $data] & 0xffffffff}]]

             

            //5.使用EL0BW中的数据作为key 加密

            set data [tcltwofish::encrypt $::maui::util::EL0BW $data iv]

             

            //6. 前面填充四个字节的crc32以及选取iv的位置,共加了五个字节

            set YKL8w [binary format Ica* $hbA8n $PG2JA $data]

        } V77Ls]} {

            set ykaki $::errorCode

            set qXoNi $::errorInfo

            maui::util::debug "encryptPayload: error encrypting: $V77Ls"

            error $V77Ls $qXoNi $ykaki

        }

        return $YKL8w

    }

1

2

3

4

5

6

7

8

9

proc UOijU {data DeSRF} {

    //1. 将四字节的长度添加在数据前

    set data [binary format Ia* [string length $data] $data]

    //2. 计算末尾添加padding的长度

    set add [expr {($DeSRF - ([string length $data] % $DeSRF)) % $DeSRF}]

    //3. 生成随机padding并附加在末尾

    append data [qA4kM $add]

    return $data

}

再看看文件数据的加密流程。从上面的脚本中,可以看到加密前的数据结果为 32字节随机数据+4字节数据+$data+最后补全32字节的padding 然后使用twofish进行加密。而twofish是分组加密算法,所以加密过程就是下面这样的


通过在前面添加32字节的随机数据,猜测是为了避免明文攻击。因为很多文件前面都有固定字节的数据

比如sqlite3数据库的前16字节固定为SQLite format 3\x00,在ECB模式下,相同密钥加密任何sqlite3数据库的前16个字节都是一样的。所以衍生出了CBC模式,在每个分组加密之前用iv或者上一个密文分组异或明文以产生不一样的数据。

然而,这个例子中前面32个字节的随机数的使用却颇有点画蛇添足的味道。
首先,它不能掩盖明文数据或者阻止明文攻击(稍后提到),其次因为这32字节的加密数据,我们在后面进行密码分析的时候可以忽略了原本的初始iv,初始iv来自哪里,来自输入密码后进行的16000次twofish加密和256次twofish解密后生成的0x1000字节的encryptedPayloadIVs,而现在却可以跳过了,从而暴露了它的阿克琉斯之踵。根据密码算法,现在解密每一段文件数据时只需要从第三个分组的数据开始解密即可,输入iv来源于上一个分组的的密文(即第二个分组),输入的key对所有文件都是一样的(也就是本次要分析出来的目标)。

再回头说说有哪些明文,从脚本可知加密的第三个分组前四个字节为加密数据的长度。在安装过程中会生成installbuilder_installer_{random}.log文件,统计生成的文件数。

在hook解密函数的过程中也发现了同样数量的加密数据,而这些数据中最小长度为0x000012a0,最大为0x00040060。所以这1212个文件在相同的密钥解密之后的前四个字节肯定是
00 0x xx xx。如果能将每段加密数据对应到具体的文件,可能还会有更多的明文信息。

综上所述,根据解密的tcl安装脚本共分析了三种破解思路:
第一种,根据输入密码爆破,工作量太大,PC上几乎不可能成功。
第二种,随机数攻击。新版本的安装程序摒弃了LCG算法的使用,使用了更加安全的随机数生成方式。
第三种,根据部分明文信息和1212个样本数据爆破32字节密钥,爆破的过程中每次验证只需要一次twofish解密16个字节即可。再配合密码差分分析,可以减少一定的尝试次数。有熟悉angr的大佬也可以尝试一下形式化验证的方式去破解。

另外,ida安装脚本中的twofish算法来源于GitHub - rageworx/libtwofish: TwoFish encryption library for modern C++ (dev.in progress)
,但是作了一些修改。文末附带校正后的版本,可以直接用。另外还有调试时用的frida脚本。

 

相关文章:

ida81输入密码验证算法分析以及破解思路

本文分析了ida81对输入密码的验证流程&#xff0c;分别对输入密码到生成解密密钥、密码素材的生成过程以及文件数据的加密过程这三个流程进行分析&#xff0c;并尝试找一些可利用的破绽。很遗憾&#xff0c;由于水平有限&#xff0c;目前也只是有个思路未能完全实现&#xff0c…...

C语言——贪吃蛇

一. 游戏效果 贪吃蛇 二. 游戏背景 贪吃蛇是久负盛名的游戏&#xff0c;它也和俄罗斯⽅块&#xff0c;扫雷等游戏位列经典游戏的⾏列。 贪吃蛇起源于1977年的投币式墙壁游戏《Blockade》&#xff0c;后移植到各种平台上。具体如下&#xff1a; 起源。1977年&#xff0c;投币式…...

Android sqlite 使用简介

进行Android应用开发时经常会用到数据库。Android系统支持sqlite数据库&#xff0c;在app开发过程中很容易通过SQLiteOpenHelper使用数据库&#xff0c;SQLiteOpenHelper依赖于Context对象&#xff0c;但是基于uiatomator1.0和Java程序等无法获取Context的应用如何使用数据库呢…...

UE地形系统材质混合实现和Shader生成分析(UE5 5.2)

前言 随着电脑和手机硬件性能越来越高&#xff0c;游戏越来越追求大世界&#xff0c;而大世界非常核心的一环是地形系统&#xff0c;地形系统两大构成因素&#xff1a;高度和多材质混合&#xff0c;此篇文章介绍下UE4/UE5 地形的材质混合方案----基于WeightMap混合。 材质层 …...

Git分支与Git标签的介绍及其场景应用

目录 一、Git分支 1.1 定义 1.2 基本概念 1.3 特点与优势 1.4 Git分支操作命令 1.4.1 查看分支 1.4.2 创建分支 1.4.3 删除分支 1.4.4 切换分支 1.4.5 创建并切换到新建分支 1.5 场景应用 1.5.1 前期准备 1.5.2 具体操作 二、Git标签 2.1 定义 2.2 类型 2.3 标…...

Three.js——基于原生WebGL封装运行的三维引擎

文章目录 前言一、什么是WebGL&#xff1f;二、Three.js 特性 前言 Three.js中文官网 Three.js是基于原生WebGL封装运行的三维引擎&#xff0c;在所有WebGL引擎中&#xff0c;Three.js是国内文资料最多、使用最广泛的三维引擎。既然Threejs是一款WebGL三维引擎&#xff0c;那么…...

第八章认识Express框架

目录 Express模块化路由 基本概述 基本使用 基本构建 案例项目 Express接收请求参数 基本概述 基本类别 Express接收GET请求参数 Express接收POST请求参数 Express接收路由参数 Express模块化路由 基本概述 在Express中&#xff0c;路由是指确定应用程序如何响应对…...

【K8s集群离线安装-kubeadm】

1、kubeadm概述 kubeadm是官方社区推出的一个用于快速部署kubernetes集群的工具。这个工具能通过两条指令快速完成一个kubernetes集群的部署。 2、环境准备 2.1 软件环境 软件版本操作系统CentOS 7Docker19.03.13K8s1.23 2.2 服务器 最小硬件配置&#xff1a;2核CPU、2G内存…...

python工具CISCO ASA设备任意文件读取

​python漏洞利用 构造payload&#xff1a; /CSCOT/translation-table?typemst&textdomain/%2bCSCOE%2b/portal_inc.lua&default-language&lang../漏洞证明&#xff1a; 文笔生疏&#xff0c;措辞浅薄&#xff0c;望各位大佬不吝赐教&#xff0c;万分感谢。 免…...

TCP关闭的两种方法概述

一个TCP需要经过四次挥手才可以关闭连接&#xff0c;能够开启四次挥手的函数有两个&#xff1a; int close(int sockfd) int shutdown(int sockfd,int howto) 接下来就分别讲解一下这两个函数。 close()函数 函数原型 #include<unistd.h> int close(int sockfd)这个函…...

Git的Hooks机制

参考文章&#xff1a;详解如何在项目中使用git Hooks&#xff08;husky、yorkie&#xff09; git hooks钩子 git hooks是一些自定义的脚本&#xff0c;用于控制git工作的流程&#xff0c;分为客户端钩子和服务端钩子。  ~/work/step-time/ [master*] ll .git/hooks total…...

代码随想录算法训练营第四十九天|121. 买卖股票的最佳时机、122. 买卖股票的最佳时机 II

第九章 动态规划part10 121. 买卖股票的最佳时机 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最…...

Rust教程6:并发编程和线程通信

文章目录 线程初步join方法线程通信 Rust系列&#xff1a;初步⚙所有权⚙结构体和枚举类⚙函数进阶⚙泛型和特征 线程初步 在Rust中&#xff0c;开启多线程进行并发编程&#xff0c;只需调用thread::spawn&#xff0c;但这里有一个坑点&#xff0c;即spawn函数只有一个传入参…...

JVM在线分析-监控工具(jps, jstat, jstatd)

参考官方文档&#xff08;jdk11&#xff09; https://docs.oracle.com/en/java/javase/11/tools/troubleshooting-tools-and-commands.html#GUID-CB44BFBA-E5F9-4D80-8EE8-28E9F16BC451 1. 监控工具(jps, jstat, jstatd) jps -q Suppresses the output of the class name, J…...

Console LDAP 配置解密

之前通过短视频向大家介绍了 Console 如何集成 LDAP&#xff0c;但很多小伙伴反映按照视频里的配置后不成功。今天就结合小伙伴们反映的问题来跟大家详细介绍一下。 Console LDAP 完整的配置参数如下&#xff1a; 名称类型说明hoststringLDAP 服务器地址portintLDAP 服务器端口…...

node插件MongoDB(三)—— 库mongoose 的使用和数据类型(一)

前言 提示&#xff1a;使用mongoose 的前提是你安装了node和 MongoDB。 mongoose 官网文档&#xff1a;http://mongoosejs.net/docs/index.html 文章目录 前言一、安装二、基本使用1. 打开bin目录的mongod.exe文件2. 基本使用的代码&#xff08;连接mongodb 服务&#xff09;3.…...

基础(二)

基础&#xff08;二&#xff09; 字符串型 C风格&#xff1a;char 变量名[] “字符串值”&#xff1b; C风格&#xff1a;string 变量名 “字符串值” #include <iostream> using namespace std; #include <string>int main() {// C风格char str1[] "h…...

思维模型 目标效应

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。明确目标&#xff0c;激发内在动机。 1 目标效应的应用 1.1 目标效应在教育领域的应用-棉花糖实验 美国斯坦福大学心理学系的教授米歇尔&#xff08;Walter Mischel&#xff09;曾经进行了…...

【从0到1设计一个网关】性能优化---Netty线程数配置与JVM参数配置

文章目录 Netty线程介绍Netty实战配置JVM参数与ZGCJVM与ZGC调优Netty线程介绍 在Netty中有两个比较重要的线程概念,一个是BOSS线程,一个是Woker线程。 Boss线程组: Boss线程组通常负责处理接受客户端连接的工作,即处理ServerSocketChannel的连接事件。 Boss线程会监听并接…...

node插件MongoDB(五)—— 库mongoose 的模块化(五)

文章目录 一、使用mongoose 模块化的原因二、准备工作2. 启动mongo.exe 和mongod.exe 两个程序连接数据库 三、基本模块的拆分1、基本逻辑2、代码3、代码图示说明 四、在index.js 中进一步的拆分1.拆分原因2.新建model文件夹存储文档的结构对象3.代码4.代码实际演示和注意点 一…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

Python训练营-Day26-函数专题1:函数定义与参数

题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一个名为 calculate_circle_area 的函数&#xff0c;该函数接收圆的半径 radius 作为参数&#xff0c;并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求&#xff1a;函数接收一个位置参数 radi…...