当前位置: 首页 > news >正文

[100天算法】-不同路径 III(day 73)

题目描述

在二维网格 grid 上,有 4 种类型的方格:1 表示起始方格。且只有一个起始方格。
2 表示结束方格,且只有一个结束方格。
0 表示我们可以走过的空方格。
-1 表示我们无法跨越的障碍。
返回在四个方向(上、下、左、右)上行走时,从起始方格到结束方格的不同路径的数目。每一个无障碍方格都要通过一次,但是一条路径中不能重复通过同一个方格。示例 1:输入:[[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
输出:2
解释:我们有以下两条路径:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
示例 2:输入:[[1,0,0,0],[0,0,0,0],[0,0,0,2]]
输出:4
解释:我们有以下四条路径:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
示例 3:输入:[[0,1],[2,0]]
输出:0
解释:
没有一条路能完全穿过每一个空的方格一次。
请注意,起始和结束方格可以位于网格中的任意位置。提示:1 <= grid.length * grid[0].length <= 20
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

从起始格子开始,尝试每一个 0 空格。当走到 2 时,如果此时网格没有还没走过的空格,说明这是一条可行的路径。也就是说我们需要用一个方式来标志已经走过的空格,可以把格子设为 -1,回溯时需要把格子重新设置为 0,不影响其他路径的尝试。

当我们走到 2 时,如何判断网格中是否还有未走过的空格?

每次都去遍历整个网格的话,时间复杂度太高。我们可以在开始先统计网格中一共有多少个可以走的格子,每走过一个格子计数器就减一。

复杂度

  • 时间复杂度:$O(4^{mn})$, m, n 分别是网格的长宽。找到起始格子和统计空格用了 $O(mn)$,递归的时间复杂度 $O(4^{mn})$,网格一共有 $mn$ 个格子,每个格子有 4 个方向可以走。
  • 空间复杂度:递归栈的最大空间 O(m∗n)。

p.s. 下方代码是我看错题了,求了所有路径。实际上只需要一个计数器来记录路径数,不消耗额外空间。

代码

JavaScript Code

/*** @param {number[][]} grid* @return {number}*/
var uniquePathsIII = function (grid) {const offsets = [[-1, 0],[1, 0],[0, -1],[0, 1],];const ans = [];const dfs = (grid, x, y, spaceCnt, path) => {if (x < 0 || x >= grid.length || y < 0 || y >= grid[0].length) return;if (grid[x][y] === 2) {spaceCnt === 0 && ans.push([...path]);return;}if (grid[x][y] === -1) return;grid[x][y] = -1; // mark// recursionfor (const [ox, oy] of offsets) {// p.s. 如果 (x+ox, y+oy) 不在网格中或者是障碍的话,也可以提前剪枝。dfs(grid, x + ox, y + oy, spaceCnt - 1, [...path, [x, y]]);}grid[x][y] = 0; // backtrack};let startPos = {};const init = grid => {let spaceCnt = 1; // 起始方格也是要走的一个格子for (let x = 0; x < grid.length; x++) {for (let y = 0; y < grid[x].length; y++) {if (grid[x][y] === 1) startPos = { x, y };if (grid[x][y] === 0) spaceCnt++;}}return spaceCnt;};// 统计要走的格子总数const spaceCnt = init(grid);dfs(grid, startPos.x, startPos.y, spaceCnt, []);return ans.length;
};

相关文章:

[100天算法】-不同路径 III(day 73)

题目描述 在二维网格 grid 上&#xff0c;有 4 种类型的方格&#xff1a;1 表示起始方格。且只有一个起始方格。 2 表示结束方格&#xff0c;且只有一个结束方格。 0 表示我们可以走过的空方格。 -1 表示我们无法跨越的障碍。 返回在四个方向&#xff08;上、下、左、右&#…...

【c++随笔12】继承

【c随笔12】继承 一、继承1、继承的概念2、3种继承方式3、父类和子类对象赋值转换4、继承中的作用域——隐藏5、继承与友元6、继承与静态成员 二、继承和子类默认成员函数1、子类构造函数 二、子类拷贝构造函数3、子类的赋值重载4、子类析构函数 三、单继承、多继承、菱形继承1…...

Excel中使用数据验证、OFFSET实现自动更新式下拉选项

在excel工作簿中&#xff0c;有两个Sheet工作表。 Sheet1&#xff1a; Sheet2&#xff08;数据源表&#xff09;&#xff1a; 要实现Sheet1中的“班级”内容&#xff0c;从数据源Sheet2中获取并形成下拉选项&#xff0c;且Sheet2中“班级”内容更新后&#xff0c;Sheet1中“班…...

Android修行手册 - 可变参数中星号什么作用(冷知识)

点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分享&…...

Python与ArcGIS系列(三)视图缩放

目录 0 简述1 在所有图层中缩放至所选要素2 在单独图层中缩放至所选要素3 改变地图范围0 简述 本篇介绍如何利用arcpy实现缩放视图到所选要素以及改变地图范围功能。 对于以及创建的选择集数据,通常需要进行缩放以更好地显示所选要素,要素缩放可分为两种:第一种是在所有图层…...

[ASP]数据库编辑与管理V1.0

本地测试&#xff1a;需要运行 ASP专业调试工具&#xff08;自己搜索下载&#xff09; 默认登陆口令&#xff1a;admin 修改口令&#xff1a;打开index.asp找到第3行把admin"admin"改成其他&#xff0c;如admin"abc123" 程序功能齐全&#xff0c;代码精简…...

MyBatis Plus整合Redis实现分布式二级缓存

MyBatis缓存描述 MyBatis提供了两种级别的缓存&#xff0c; 分别时一级缓存和二级缓存。一级缓存是SqlSession级别的缓存&#xff0c;只在SqlSession对象内部存储缓存数据&#xff0c;如果SqlSession对象不一样就无法命中缓存&#xff0c;二级缓存是mapper级别的缓存&#xff…...

如何帮助 3D CAD 设计师实现远程办公

当 3D CAD 设计师需要远程办公时&#xff0c;他们可能需要更强的远程软件&#xff0c;以满足他们的专业需求。比如高清画质&#xff0c;以及支持设备重定向、多显示器支持等功能。3D CAD 设计师如何实现远程办公&#xff1f;接下来我们跟随 Platinum Tank Group 的故事来了解一…...

如何在 Idea 中修改文件的字符集(如:UTF-8)

以 IntelliJ IDEA 2023.2 (Ultimate Edition) 为例&#xff0c;如下&#xff1a; 点击左上角【IntelliJ IDEA】->【Settings…】&#xff0c;如下图&#xff1a; 从弹出页面的左侧导航中找到【Editor】->【File Encodings】&#xff0c;并将 Global Encoding、Project E…...

【C++】单例模式【两种实现方式】

目录 一、了解单例模式前的基础题 1、设计一个类&#xff0c;不能被拷贝 2、设计一个类&#xff0c;只能在堆上创建对象 3、设计一个类&#xff0c;只能在栈上创建对象 4、设计一个类&#xff0c;不能被继承 二、单例模式 1、单例模式的概念 2、单例模式的两种实现方式 …...

php的api接口token简单实现

<?php // 生成 Token function generateToken() {$token bin2hex(random_bytes(16)); // 使用随机字节生成 tokenreturn $token; } // 存储 Token&#xff08;这里使用一个全局变量来模拟存储&#xff09; $tokens []; // 验证 Token function validateToken($token) {gl…...

CCNA课程实验-13-PPPoE

目录 实验条件网络拓朴需求 配置实现基础配置模拟运营商ISP配置ISP的DNS配置出口路由器OR基础配置PC1基础配置 出口路由器OR配置PPPOE拨号创建NAT(PAT端口复用) PC1测试结果 实验条件 网络拓朴 需求 OR使用PPPoE的方式向ISP发送拨号的用户名和密码&#xff0c;用户名&#xf…...

cocosCreator 之 Bundle使用

版本&#xff1a; v3.4.0 语言&#xff1a; TypeScript 环境&#xff1a; Mac Bundle简介 全名 Asset Bundle(简称AB包)&#xff0c;自cocosCreator v2.4开始支持&#xff0c;用于作为资源模块化工具。 允许开发者根据项目需求将贴图、脚本、场景等资源划分在 Bundle 中&am…...

分类网络搭建示例

搭建CNN网络 本章我们来学习一下如何搭建网络&#xff0c;初始化方法&#xff0c;模型的保存&#xff0c;预训练模型的加载方法。本专栏需要搭建的是对分类性能的测试&#xff0c;所以这里我们只以VGG为例。 请注意&#xff0c;这里定义的只是一个简陋的版本&#xff0c;后续一…...

为 Ubuntu 虚拟机构建 SSH 服务器

以校园网环境和VMware为例&#xff0c;关键步骤如下&#xff1a; 安装 SSH 服务&#xff1a; 打开 Ubuntu 虚拟机。打开终端。输入命令 sudo apt-get update 更新软件包列表。输入命令 sudo apt-get install openssh-server 安装 SSH 服务。 配置 SSH 服务&#xff1a; 编辑配…...

SpringBoot--中间件技术-2:整合redis,redis实战小案例,springboot cache,cache简化redis的实现,含代码

SpringBoot整合Redis 实现步骤 导pom文件坐标 <!--redis依赖--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId> </dependency>yaml主配置文件&#xff0c;配置…...

linux rsyslog配置文件详解

1.rsyslog配置文件简介 linux rsyslog配置文件/etc/rsyslog.conf分为三部分:MODULES、GLOBAL DIRECTIVES、RULES ryslog模块说明 模块说明MODULES指定接收日志的协议和端口。若要配置日志服务器,则需要将相应的配置项注释去掉。GLOBAL DIRECTIVES主要用来配置日志模版。指定…...

wordpress是什么?快速搭网站经验分享

​作者主页 &#x1f4da;lovewold少个r博客主页 ⚠️本文重点&#xff1a;c入门第一个程序和基本知识讲解 &#x1f449;【C-C入门系列专栏】&#xff1a;博客文章专栏传送门 &#x1f604;每日一言&#xff1a;宁静是一片强大而治愈的神奇海洋&#xff01; 目录 前言 wordp…...

排序 算法(第4版)

本博客参考算法&#xff08;第4版&#xff09;&#xff1a;算法&#xff08;第4版&#xff09; - LeetBook - 力扣&#xff08;LeetCode&#xff09;全球极客挚爱的技术成长平台 本文用Java实现相关算法。 我们关注的主要对象是重新排列数组元素的算法&#xff0c;其中每个元素…...

asp.net 在线音乐网站系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net 在线音乐网站系统是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语言 开发 asp.net 在线音乐网站系统1 应用…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...