评论:AlexNet和CaffeNet有何区别?
一、说明
二、2012年的ImageNet竞赛
ImageNet 是一个包含超过 1500 万张带标签的高分辨率图像的数据集,其中包含大约 22,000 个类别。ILSVRC 使用 ImageNet 的子集,其中每个类别包含约 1000 个图像。总共大约有 120 万张训练图像、5 万张验证图像和 15 万张测试图像。
AlexNet,ILSVRC 2012 图像分类冠军,错误率显着降低
答:对于AlexNet,我们将介绍:
- 建筑学
- ReLU(修正线性单元)
- 多个 GPU
- 局部响应标准化
- 重叠池化
- 数据增强
- 辍学
- 学习参数的其他细节
- 结果
B. 对于CaffeNet来说,它只是AlexNet 的单 GPU 版本。由于通常情况下,人们只有一个 GPU,因此 CaffeNet 是一个用于模拟 AlexNet 的单 GPU 网络。我们也将在本故事的结尾介绍这一点。
通过遍历每个组件,我们可以知道每个组件的重要性。其中一些现在不太有用。但它们确实激发了其他网络的发明。
三、AlexNet网络描述
1. 架构
亚历克斯网
AlexNet 包含八层:
输入:227×227×3输入图像(论文中和图中也提到了224×224×3尺寸,但是后来指出应该是227,或者在计算过程中填充了224×224×3第 1 次卷积。)
第一:卷积层:2组,每组48个核,大小11×11×3
(stride:4,pad:0)
输出55×55×48特征图×2组
然后3×3重叠最大池化(stride:2)
输出27×27×48特征图×2组
然后局部响应归一化
输出27×27×48特征图×2组
第二:卷积层:2组,每组128个核,大小为5×5×48
(步长:1,pad:2)
输出27×27×128特征图×2组
然后3×3重叠最大池化(步长:2)
输出13×13×128特征图×2组
然后局部响应归一化
输出13×13×128特征图×2组
第三:卷积层:2组,每组192个核,大小为3×3×256
(stride:1,pad:1)
输出13×13×192个特征图×2组
第四:卷积层:2组,每组192个核,大小为3×3×192
(stride:1,pad:1)
输出13×13×192个特征图×2组
第五:卷积层:256个大小为3×3×192的核
(步长:1,pad:1)
输出13×13×128特征图×2组
然后3×3重叠最大池化(步长:2)
输出6×6 ×128个特征图×2组
第 6 层: 4096 个神经元的全连接(密集)层
第 7 层: 4096 个神经元的全连接(密集)层
第 8 层:输出的全连接(密集)层
1000 个神经元(因为有 1000 个类)
Softmax用于计算损失。
总共有6000万个参数需要训练!!!
2.ReLU
激活函数
在 Alexnet 之前,使用的是 Tanh。AlexNet 中引入了 ReLU。
ReLU比Tanh 快六倍,达到 25% 的训练错误率。
3.多个GPU
当时使用的是NVIDIA GTX 580 GPU,只有3GB显存。因此,我们可以在架构中看到它们分成两条路径并使用 2 个 GPU 进行卷积。相互通信仅发生在一个特定的卷积层上。
因此,使用 2 个 GPU 是由于内存问题,而不是为了加快训练过程。
整个网络与只有一半内核(只有一条路径)的网络相比, Top-1和top-5错误率分别降低了1.7%和1.2%。
4. 局部响应标准化
正常化
在AlexNet中,使用了局部响应归一化。正如我们在方程中看到的,它与批量归一化不同。标准化有助于加速收敛。如今,使用批量归一化而不是使用本地响应归一化。
通过本地响应标准化,Top-1 和 top-5 错误率分别降低了 1.4% 和 1.2%。
5. 重叠池化
重叠池化是步幅小于内核大小的池化,非重叠池化是步幅等于或大于内核大小的池化。
通过重叠池化,Top-1 和 top-5 错误率分别降低了 0.4% 和 0.3%。
6. 数据增强
数据增强的两种形式。
第一:图像平移和水平反射(镜像)
从一张 256×256 图像加上水平反射中提取随机 224×224。训练集的大小增加了 2048 倍。计算公式如下:
通过图像平移:(256–224)²=32²=1024
通过水平反射:1024 × 2 = 2048
测试时,使用四个角斑块加上中心斑块及其对应的水平反射(总共10个斑块)进行预测,并取所有结果的平均值以获得最终的分类结果。
第二:改变强度
PCA 在训练集上执行。对于每个训练图像,添加数量:
强度改变量
其中 pi 和 λi 分别是 RGB 像素值的 3×3 协方差矩阵的第 i 个特征向量和特征值,αi 是平均值为 0、标准方差为 0.1 的随机变量。
通过数据增强来增加训练集的大小,Top-1 错误率降低了 1% 以上。
7. 辍学
辍学
对于使用 dropout 的层,在训练期间,每个神经元都有概率不参与前馈传递并参与反向传播。因此,每个神经元都可以有更大的机会接受训练,而不是过分依赖某些非常“强”的神经元。
考试期间,不会出现掉线的情况。
在 AlexNet 中,前两个全连接层使用 0.5 的概率。Dropout是一种减少过度拟合的正则化技术。
8.学习参数的其他细节
批量大小:128
动量 v:0.9
权重衰减:0.0005
学习率 ϵ:0.01,当验证错误率停止改善时手动减少 10,减少 3 倍。
动量v和权重w的更新
包含 120 万张图像的训练集。
网络训练了大约 90 个周期。
使用两个 NVIDIA GTX 580 3GB GPU 可以使用五到六天。
9. 结果
ILSVRC 2010 中的错误率
在 ILSVRC 2010 中,AlexNet 的 Top-1 和 top-5 错误率分别为 37.5% 和 17.0%,优于其他方法。
如果没有通过数据增强对 10 个补丁上的 10 个预测进行平均,AlexNet 仅获得 Top-1 和 top-5 错误率,分别为 39.0% 和 18.3%。
ILSVRC 2012 中的错误率
通过1个AlexNet(1个CNN),验证错误率为18.2%。
通过对5 个 AlexNet(5 个 CNN)的预测进行平均,错误率降低到16.4%。这是LeNet 中已经用于数字分类的一种 boosting 技术。
通过向 AlexNet (1 CNN*) 添加一层卷积层,验证错误率降低至16.6%。
通过对2 个修改后的 AlexNet 和 5 个原始 AlexNet(7 个 CNN*)的预测进行平均,验证错误率降低至15.4%。
AlexNet 的一些前 5 名结果
四、CaffeNet
CaffeNet 是 AlexNet 的 1-GPU 版本。该架构是:
注意点:
我们可以看到 AlexNet 中的 2 条路径合并为一条路径。
值得注意的是,对于 CaffeNet 的早期版本,池化层和归一化层的顺序是相反的,这是偶然的。但在 Caffe 提供的当前版本的 CaffeNet 中,它已经为 Caffenet 提供了池化层和归一化层的正确顺序。
通过对每个组件的逐一研究,我们可以了解每个组件的有效性。:)
如果有兴趣,还有一个关于使用 Nvidia-Docker 和 Caffe 快速设置 CaffeNet 的教程[3]。
相关文章:

评论:AlexNet和CaffeNet有何区别?
一、说明 在这个故事中,我们回顾了AlexNet和CaffeNet。AlexNet 是2012 年ILSVRC(ImageNet 大规模视觉识别竞赛)的获胜者,这是一项图像分类竞赛。而CaffeNet是AlexNet的单GPU版,因此,我们平时在普通电脑的Al…...

什么是 IT 资产管理(ITAM),以及它如何简化业务
IT 资产管理对任何企业来说都是一项艰巨的任务,但使用适当的工具可以简化这项任务,例如,IT 资产管理软件可以为简化软件和硬件的管理提供巨大的优势。 什么是 IT 资产管理 IT 资产管理(ITAM)是一组业务实践ÿ…...

git快速上传代码
① git init; 初始化git,之后在文件夹里有.git文件,这个需要 勾选才能查看。 ② git remote add test myFisrtTest: 测试专用 这里的test是自定义的,myFisrtTest: 测试专用 是远程仓库 ③ git branch -a 这里是查看分支 ④ …...

stable diffusion comfyui的api使用教程
一、为什么要使用comfyui的api?对比webui的api,它有什么好处? 1、自带队列 2、支持websocket 3、无需关心插件是否有开放api接口,只要插件在浏览器中可以正常使用,接口就一定可以使用 4、开发人员只需关心绘图流程的搭建 5、切换…...
Swift中的strong, weak, unowned
在 Swift 中,strong, weak, 和 unowned 关键词用于管理内存中对象的引用。这些关键词与 Swift 的自动引用计数(ARC)系统紧密相关,用于防止内存泄漏和强引用循环。下面是对这三种引用类型的简要说明: 1. Strong 默认行…...
Linux命令——ssh
Linux命令——ssh 背景 SSH(Secure Shell 的缩写)是一种网络协议,用于加密两台计算机之间的通信,并且支持各种身份验证机制。 历史上,网络主机之间的通信是不加密的,属于明文通信。这使得通信很不安全&a…...
在qml中,text如何左对齐,对齐方式有哪些?如何换行?
在Qt Quick(即QML)中,你可以使用Text组件的horizontalAlignment属性来控制文本的对齐方式。以下是一些常用的对齐方式: Align.Left: 文本左对齐。这是默认的对齐方式。 Align.Center: 文本居中对齐。 Align.Right: 文本右对齐。 …...
【Rust 易学教程】第 1 天:Rust 基础,基本语法
上一节:【Rust 易学教程】学前准备:Cargo, 你好 今天,我们正式进入 Rust 基础的学习。在本文的内容中,我会为大家介绍以下内容: 基本 Rust 语法: 变量、标量和复合类型、枚举、结构、引用、函数和方法。控…...

Linux(命令)——结合实际场景的命令 查找Java安装位置命令
前言 在内卷的时代,作为开发的程序员也需要懂一些Linux相关命令。 本篇博客结合实际应用常见,记录Linux命令相关的使用,持续更新,希望对你有帮助。 目录 前言引出一、查找Java安装位置命令1、使用which命令2、使用find命令3、查…...
C语言基础 -- scanf函数的返回值及其应用
前言、scanf函数有返回值 我们在作PTA上的编程作业时,经常在编译窗口会看到如下的信息: warning: ignoring return value of ‘scanf’, declared with attribute warn_unused_result [-Wunused-result] 当时老师一定会告诉你,这个一个&qu…...

mac 安装 selenium + chrome driver
前言 使用 selenium 模拟浏览器渲染数据,需要依赖各浏览器的驱动才能完成,因此需要单独安装chrome driver 查看本地 chrome 浏览器的版本 可以看到我这里已经是 arm 架构下最新的版本了 下载对应的 chrome driver 访问下面的地址: Chrome…...

【阿里云】函数计算 X 通义千问快速部署
写在前面:博主是一只经过实战开发历练后投身培训事业的“小山猪”,昵称取自动画片《狮子王》中的“彭彭”,总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域,如今终有小成…...

el-table本地与线上的样式不一致出现错乱
使用el-table的时候有几个表头是循环出来的,出现在本地运行的时候,表头内el-input输入框样式正常,但是发布以后出现样式错乱问题 线上样式错乱: 本地正常: 出现这个问题的原因是我有几个表头是循环出来的࿰…...

C语言--从键盘输入当月利润I,求应发奖金总数。
题目描述: 企业发放的奖金根据利润提成。利润I低于或等于100000元的,奖金可提成10%; 利润高于100000 元,低于200000元(1000001000000时,超过1000000元的部分按 1%提成。从键盘输入当月利润I,求应发奖金总数。 int main() {int m…...

记忆科技携手中国电信,一站式存储打造坚实数字底座
11月10日,以“数字科技 焕新启航”为主题的2023数字科技生态大会在广州盛大开幕,本次大会由中国电信、广东省人民政府联合举办,是一场数字科技领域的年度盛会。忆联母公司记忆科技作为中国电信的合作伙伴之一受邀参会,深度参与了大…...

基于ssm的学生档案管理系统(有报告)。Javaee项目,ssm项目。
演示视频: 基于ssm的学生档案管理系统(有报告)。Javaee项目,ssm项目。 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 项目介绍ÿ…...
阿里云服务中断事件:原因、影响与解决方案
💕欢迎大家:这里是CSDN,我总结知识的地方,欢迎来到我的博客,感谢大家的观看🥰 如果文章有什么需要改进的地方还请大佬不吝赐教 先在次感谢啦😊 文章目录 阿里云服务中断事件:原因、影…...
搜维尔科技:「体育类」Movella Xsens极限运动捕捉测试
搜维尔科技:「体育类」Movella Xsens极限运动捕捉测试...

CSS常用示例100+ 【目录】
目前已有文章 11 篇 本专栏记录的是经常使用的CSS示例与技巧,主要包含CSS布局,CSS特效,CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点,CSS特效主要是一些动画示例,CSS花边是描述了一些CSS相关…...

Shopee买家通系统之注册虾皮买家号大概需要多少成本
想要注册大量的虾皮买家号,可以使用shopee买家通系统进行注册,这款软件可以全自动化的注册虾皮买家号,不过想要自动化更方便,对于账号资料有一定的要求。 1、现在注册虾皮买家号基本上都是需要用手机号注册了的,而虾皮…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...