实验11 SQL互联网业务查询-2
这就是SQL题带给我的自信😕
可能发题解到博客上,主要是写完一遍实在不想看第二遍,太长了,优化都不想优化,看着头疼。
技术栈 – WhiteNight's Site
一
USE mydata;
#请在此处添加实现代码
########## Begin ##########
SELECT A.date,IFNULL(ROUND(COUNT(DISTINCT E.user_id)/COUNT(DISTINCT C.user_id),3),0) AS p
FROM login AS A
LEFT JOIN(
SELECT *
FROM login AS B
WHERE B.date=(SELECT MIN(D.date)FROM login AS D WHERE B.user_id=D.user_idGROUP BY D.user_idLIMIT 1
)) AS C
ON A.date=C.date AND A.user_id=C.user_id
LEFT JOIN login AS E
ON A.user_id=E.user_id AND DATE_ADD(A.date,INTERVAL 1 DAY)=E.date
GROUP BY A.date
ORDER BY A.date ASC
########## End ##########
二
USE mydata;
#请在此处添加实现代码
########## Begin ##########
SELECT t.user_id,MIN(t.date) AS first_buy_date,MAX(t.date) AS second_buy_date,MAX(t.cnt) AS cnt
FROM(SELECT *,COUNT(B.user_id)over(partition by B.user_id) AS cnt,row_number()over(partition by B.user_id order by B.date ASC) AS rkFROM order_info AS B WHERE B.status!="no_completed"AND B.date>'2021-10-15'AND IF(B.product_name="C++" OR B.product_name="JAVA" OR B.product_name="Python",1,0)=1
)t
WHERE t.rk<=2
GROUP BY t.user_id
HAVING COUNT(t.user_id)>=2
########## End ##########
三
USE mydata;
#请在此处添加实现代码
########## Begin ##########
SELECT t2.product_name,t2.user_id,t2.rnk,CONCAT(ROUND(t2.incomp_rate,2),'%') AS incomp_rate
FROM(SELECT *,dense_rank()over(partition by t.product_name order by t.incomp_rate DESC) AS rnkFROM (
SELECT A.user_id,A.product_name,ROUND(COUNT(IF(A.status='no_completed',1,NULL))*100/COUNT(A.status),4) AS incomp_rate
FROM order_info AS A
WHERE A.date>='2021-10-16' AND A.date<='2021-10-31'
AND EXISTS(SELECT 1FROM order_info AS B WHERE B.user_id=A.user_id AND B.product_name=A.product_nameAND B.date>='2021-10-16' AND B.date<='2021-10-31'AND B.status='no_completed'
)
GROUP BY A.user_id,A.product_name)t
)AS t2
WHERE t2.rnk<=3
ORDER BY t2.product_name ASC,t2.rnk ASC
########## End ##########
相关文章:
实验11 SQL互联网业务查询-2
这就是SQL题带给我的自信😕 可能发题解到博客上,主要是写完一遍实在不想看第二遍,太长了,优化都不想优化,看着头疼。 技术栈 – WhiteNights Site 一 USE mydata; #请在此处添加实现代码 ########## Begin #######…...
C++知识点梳理:C++ templates
c模板包括:类模板、类(非模板类和模板类)方法模板、函数模板、别名模板、变量模板。 类模板模板参数列表说明: 1)类定义 仅模板参数列表声明,template<>行。 类名后无需参数说明<>。 2…...
uniapp form表单提交事件手动调用
背景: UI把提交的按钮弄成了图片,之前的button不能用了。 <button form-type"submit">搜索</button> 实现: html: 通过 this.$refs.fd 获取到form的vue对象。手动调用里面的_onSubmit()方法。 methods:…...
Accelerate 0.24.0文档 三:超大模型推理(内存估算、Sharded checkpoints、bitsandbytes量化、分布式推理)
文章目录 一、内存估算1.1 Gradio Demos1.2 The Command 二、使用Accelerate加载超大模型2.1 模型加载的常规流程2.2 加载空模型2.3 分片检查点(Sharded checkpoints)2.4 示例:使用Accelerate推理GPT2-1.5B2.5 device_map 三、bitsandbytes量…...
HackTheBox-Starting Point--Tier 2---Markup
文章目录 一 Markup测试过程1.1 打点1.2 权限获取1.3 权限升级 二 题目 一 Markup测试过程 1.1 打点 1.端口扫描 nmap -A -Pn -sC 10.129.95.1922.访问web网站,登录口爆破发现存在弱口令admin:password 3.抓包,发现请求体是XML格式 4.尝试使…...
android studio导入eclipse项目
网上下载一个老工程,.project文件里有eclipse。 android studio导入eclipse项目 eclipse项目结构 Android studio文件结构 下面是导入步骤: 第一步,打开一个项目。 选择File->New->Import Project 第二步,选择Eclipse项目根…...
如何利用AI实现银行存量客户的营销?
近年来,大数据、人工智能等热门关键字多次被写入中央文件与国务院政府工作报告,目前已上升为国家战略,并将深刻地改变现有行业的游戏规则。 金融行业是当今大数据、人工智能应用最广、最深的领域之一。随着数据仓库和数据科学的发展ÿ…...
springboot327基于Java的医院急诊系统
交流学习: 更多项目: 全网最全的Java成品项目列表 https://docs.qq.com/doc/DUXdsVlhIdVlsemdX 演示 项目功能演示: ————————————————...
Unity3d 导入中文字体转TMPtext asset
外部字体放入unity仓库以后呢,需要把这个字体转成用立体的字体文件才可以被使用! 要想转换的话呢先放入仓库对字体点右键上面有一个Create创建里面有一个TEXT Asset,创建好就可以使用了...
云积万相,焕发电商店铺新活力
数字化时代,电商店铺的运营和营销策略越来越受到重视。如何让店铺在众多的竞争中脱颖而出,吸引更多的顾客,提高销售额,是每个电商品牌都需要思考的问题。云积天赫最近推出的云积万相为电商店铺带来全新的活力和更多的可能性。 …...
字典管理怎么使用,vue3项目使用若依的的字典管理模块
若依框架数据字典的使用_若依数据字典_哈哈水水水水的博客-CSDN博客 【精选】关于数据字典的理解与设计_数据字典怎么设计-CSDN博客 若依的字典值如何使用(超详细图文教程)_若依字典管理_丿BAIKAL巛的博客-CSDN博客 Vue3组合式API:getCurr…...
【汇编】内存中字的存储、用DS和[address]实现字的传送、DS与数据段
文章目录 前言一、内存中字的存储1.1 8086cpu字的概念1.2 16位的字存储在一个16位的寄存器中,如何存储?1.3 字单元 二、用DS和[address]实现字的传送2.1 字的传送是什么意思?2.2 要求原理解决方案:DS和[address]配合8086传送16字节…...
数据分析 - 分散性与变异的量度
全距 - 极差 处理变异性 方差度量 数值与均值的距离,也就是数据的差异性 标准差描述:典型值 和 均值的距离的方法,数据与均值的分散情况...
Neo4j数据库介绍及简单使用
图数据库介绍 图数据库是一种专门设计用于存储和管理图形数据的数据库类型。在图数据库中,数据以图的形式表示,其中节点表示实体,边表示实体之间的关系。这种表示方式非常适合处理具有复杂关系的数据,如社交网络、推荐系统、网络…...
ubuntu 20.04安装 Anaconda教程
在安装Anaconda之前需要先安装ros(防止跟conda冲突,先装ros)。提前安装好cuda 和cudnn。 本博客参考:ubuntu20.04配置ros noetic和cuda,cudnn,anaconda,pytorch深度学习的环境 安装完conda后,输入: pyth…...
iframe渲染后端接口文件和实现下载功能
一:什么是iframe? 1、介绍 iframe 是HTML 中的一种标签,全称为 Inline Frame,即内联框架。它可以在网页中嵌入其他页面或文档,将其他页面的内容以框架的形式展示在当前页面中。iframe的使用方式是通过在HTML文档中插入…...
广西建筑工地模板:支模九层桉木模板
广西作为中国西南地区的重要建筑市场,建设工地的模板需求量一直居高不下。在众多建筑模板中,支模九层桉木模板以其强度高、使用寿命长的特点而备受关注。本文将介绍广西建筑工地常用的支模九层桉木模板,并探讨其在建筑施工中的应用优势。支模…...
java集合,栈
只有栈是类 列表是个接口 栈是个类 队列 接口有双链表,优先队列(堆) add会报错 offer是一个满了不会报错 set集合 有两个类实现了这个接口...
Ubuntu 20.04 LTS ffmpeg gif mp4 互转 许编译安装ffmpeg ;解决gif转mp4转换后无法播放问题
安装ffmpeg apt install ffmpeg -y gif转mp4 ffmpeg -f gif -i ldh.gif ldh.mp4 故障:生成没报错,但mp4无法播放,体积也不正常 尝试编译安装最新版 sudo apt install -y yasm axel -n 100 https://ffmpeg.org/releases/ffmpeg-6.0.1.tar.x…...
【Nginx】使用nginx进行反向代理与负载均衡
使用场景 反向代理:一个网站由许多服务器承载的,网站只暴露一个域名,那么这个域名指向一个代理服务器ip,然后由这台代理服务器转发请求到网站负载的多台服务器中的一台处理。这就需要用到Nginx的反向代理实现了 负载均衡…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
aardio 自动识别验证码输入
技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...
