【论文解读】GPT Understands, Too
一.论文
1.1 P-tuning
区别于之前的工作,这篇工作认为promote可以在句子中的任意位置起到作用,可以将它们插入上下文或目标中
上图中,左图是不使用任何操作,右图是选择在居首和目标前插入promote的embedding,插入promote的过程可以表示为
其中x代表一系列离散的输入令牌,y代表目标(可以理解为希望模型想要给你的回答),e()表示对应的embedding,其实就是将其参数化映射成为伪tokens,即
通过最小化这些参数
1.2 promote生成
嵌入的promote实际上可以理解为不一定离散且不相互关联的,而实际上的promote其实应该是高度离散的且具有关联性的,因此作者选择使用双向长短期记忆网络(LSTM),激活函数和MLP来建模这种关系
在推理中,我们只需要输出嵌入h,并且可以丢弃LSTM头
二.代码
本质上是使用一个PromptEncoder来生成伪的embedding添加到原先的embedding中
2.1 训练
训练过程只更新promote_encoder中的参数
2.1.1 PromptEncoder
在PTuneForLAMA中实例化了PromptEncoder
PromptEncoder本质上是一个(嵌入 + LSTM + MLP)
import torch
import torch.nn as nnclass PromptEncoder(torch.nn.Module):def __init__(self, template, hidden_size, tokenizer, device, args):super().__init__()self.device = deviceself.spell_length = sum(template)self.hidden_size = hidden_sizeself.tokenizer = tokenizerself.args = args# ent embeddingself.cloze_length = templateself.cloze_mask = [[1] * self.cloze_length[0] # first cloze+ [1] * self.cloze_length[1] # second cloze+ [1] * self.cloze_length[2] # third cloze]self.cloze_mask = torch.LongTensor(self.cloze_mask).bool().to(self.device)self.seq_indices = torch.LongTensor(list(range(len(self.cloze_mask[0])))).to(self.device)# embeddingself.embedding = torch.nn.Embedding(len(self.cloze_mask[0]), self.hidden_size).to(self.device)# LSTMself.lstm_head = torch.nn.LSTM(input_size=self.hidden_size,hidden_size=self.hidden_size // 2,num_layers=2,dropout=self.args.lstm_dropout,bidirectional=True,batch_first=True)self.mlp_head = nn.Sequential(nn.Linear(self.hidden_size, self.hidden_size),nn.ReLU(),nn.Linear(self.hidden_size, self.hidden_size))print("init prompt encoder...")def forward(self):input_embeds = self.embedding(self.seq_indices).unsqueeze(0)output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0]).squeeze()return output_embeds
2.1.2 调用
在PTuneForLAMA的forward函数中调用了embed_input来实现
相关文章:

【论文解读】GPT Understands, Too
一.论文 1.1 P-tuning 区别于之前的工作,这篇工作认为promote可以在句子中的任意位置起到作用,可以将它们插入上下文或目标中 上图中,左图是不使用任何操作,右图是选择在居首和目标前插入promote的embedding,插入pro…...
组合式API_生命周期
选项式API_生命周期 <template><h3>选项式API</h3><p>{{ message }}</p> </template> <script> export default {data(){return{message:""}},mounted(){this.message "选项式API生命周期函数"} } </scr…...
WPF如何实现应用程序托盘
在WPF中实现应用程序托盘图标和菜单功能通常需要使用System.Windows.Forms.NotifyIcon类,因为WPF本身并没有直接提供这样的控件。为了使用NotifyIcon,你需要添加对System.Windows.Forms的引用。以下是如何实现的步骤: 1. 添加对 System.Wind…...
ERROR: column “xxxx.id“ must appear in the GROUP BY
org.postgresql.util.PSQLException: ERROR: column “xxx.id” must appear in the GROUP BY clause or be used in an aggregate function 错误**:列“XXXX.id”必须出现在GROUP BY子句中或在聚合函数中使用** 出现这种错误的sql如下: select name,…...
【C++ 学习 ㊲】- 五种特殊类的设计
目录 一、设计一个禁止拷贝的类 二、设计一个只能在堆区上创建对象的类 三、设计一个只能在栈区和静态区上创建对象的类 四、设计一个不能继承的类 五、设计一个只能创建一个对象的类(单例模式) 一、设计一个禁止拷贝的类 拷贝只会发生在两个场景中…...

探索arkui(2)--- 布局(列表)--- 2(支持分组/实现响应滚动位置)
前端开发布局是指前端开发人员宣布他们开发的新网站或应用程序正式上线的活动。在前端开发布局中,开发人员通常会展示新网站或应用程序的设计、功能和用户体验,并向公众宣传新产品的特点和优势。前端开发布局通常是前端开发领域的重要事件,吸…...

systemverilog:interface中端口方向理解
(1)从testbench的角度看,tb中信号的输入输出方向与interface中信号输入输出方向一致: (2)从DUT角度看,DUT中信号输入输出方向与interface中信号输入输出方向相反。简单图示如下: 代…...

【GUI】-- 08 JButton、JRadioButton、JCheckBox
GUI编程 03 Swing 3.5 JButton 图片置于按钮之上的JButton: package com.duo.lesson05;import javax.swing.*; import java.awt.*; import java.net.URL;public class JButtonDemo01 extends JFrame {public JButtonDemo01() {Container contentPane getConten…...

【postgresql】CentOS7 安装Pgweb
Pgweb Pgweb是PostgreSQL的一个基于web的数据库浏览器,用Go编写,可在Mac、Linux和Windows机器上运行。以零依赖性的简单二进制形式分布。非常易于使用,并具有适当数量的功能。简单的基于web和跨平台的PostgreSQL数据库浏览器。 特点 跨平台…...
基于python和定向爬虫的商品比价系统
论文下载 基于python和定向爬虫的商品比价系统 Price Comparison System for Products Based on Python and Targeted Web Crawling 目录 目录 2 摘要 3 关键词 3 第一章 绪论 4 1.1 研究背景 4 1.2 研究意义 5 1.3 国内外研究现状 7 1.4 本文主要工作和章节安排 8 …...

使用GPT-4训练数据微调GPT-3.5 RAG管道
原文:使用GPT-4训练数据微调GPT-3.5 RAG管道 - 知乎 OpenAI在2023年8月22日宣布,现在可以对GPT-3.5 Turbo进行微调了。也就是说,我们可以自定义自己的模型了。然后LlamaIndex就发布了0.8.7版本,集成了微调OpenAI gpt-3.5 turbo的…...
二十三种设计模式全面解析-深入解析模板方法模式的奇妙世界
在软件设计的奇妙宇宙中,有一种设计模式如一颗流星般划过,留下绚丽的光芒,它就是——模板方法模式(Template Method Pattern)。这个模式不仅令代码更加灵活,而且蕴含了一种设计哲学,本文将深入研…...

【Spring】加载properties文件
文章目录 在Spring Context中加载properties文件测试总结 在Spring Context中加载properties文件 分为三步,如下图所示: 完整代码: <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.…...

react中间件的理解
一、是什么? 中间件(Middleware)在计算机中,是介于应用系统和系统软件之间的一类软件,它使用系统软件所提供的基础服务(功能),衔接网络应用上的各个部分或不同的应用,能…...

React函数组件状态Hook—useState《进阶-对象数组》
React函数组件状态-state 对象 state state 中可以保存任意类型的 JavaScript 值,包括对象。但是,你不应该直接修改存放在 React state 中的对象。相反,当你想要更新⼀个对象时,你需要创建⼀个新的对象(或者将其拷⻉⼀…...

linux 网络 cat /proc/net/dev 查看测试网络丢包情况
可以通过 cat /proc/net/dev 查看测试网络丢包情况,drop关键字,查看所有网卡的丢包情况 还可以看其他数据, /proc/net/下面有如下文件...
记录配置VS,使用opencv与Eigen
方法一: 1.下载VS 2.配置opencv,参考大佬博客,注意更改博客中版本的部分细节,比如opencv_world440d.lib换成自己下载的版本 3.配置Eigen,参考大佬博客 方法二:博客 本人第一次配置时候按照这篇内容配置的,但是不知道哪…...

uart控制led与beep
仲裁模块代码: // 外设控制模块,根据uart接收到的数据,控制led与beep的标志信号。 module arbit(input wire sys_clk ,input wire sys_rst_n ,input wire pi_flag …...
Linux修改root密码
如果知道当前的root密码,修改boot密码操作较简单。 步骤如下: # passwd --在root用户下执行passwd命令 Changing password for user root. New password: --此处输入新密码 BAD PASSWORD: The password is shorter than 8 characters Ret…...
C/C++模板类模板与函数模板区别,以及用法详解
类模板 类模板语法 类模板作用: 建立一个通用类,类中的成员 数据类型可以不具体制定,用一个虚拟的类型来代表。 语法: template<typename T> 类解释: template --- 声明创建模板 typename --- 表面其后面的…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...

break 语句和 continue 语句
break语句和continue语句都具有跳转作用,可以让代码不按既有的顺序执行 break break语句用于跳出代码块或循环 1 2 3 4 5 6 for (var i 0; i < 5; i) { if (i 3){ break; } console.log(i); } continue continue语句用于立即终…...

今日行情明日机会——20250609
上证指数放量上涨,接近3400点,个股涨多跌少。 深证放量上涨,但有个小上影线,相对上证走势更弱。 2025年6月9日涨停股主要行业方向分析(基于最新图片数据) 1. 医药(11家涨停) 代表标…...

VASP软件在第一性原理计算中的应用-测试GO
VASP软件在第一性原理计算中的应用 VASP是由维也纳大学Hafner小组开发的一款功能强大的第一性原理计算软件,广泛应用于材料科学、凝聚态物理、化学和纳米技术等领域。 VASP的核心功能与应用 1. 电子结构计算 VASP最突出的功能是进行高精度的电子结构计算ÿ…...