当前位置: 首页 > news >正文

python 对图像进行聚类分析

import cv2
import numpy as np
from sklearn.cluster import KMeans
import time# 中文路径读取
def cv_imread(filePath, cv2_falg=cv2.COLOR_BGR2RGB):   cv_img = cv2.imdecode(np.fromfile(filePath, dtype=np.uint8), cv2_falg)    return cv_img# 自定义装饰器计算时间
def compute_time(func):def compute(*args, **kwargs):st = time.time()result = func(*args, **kwargs)et = time.time()print('消费时间 %.6f s' % (et - st))return resultreturn compute@compute_time
def kmeans_img(image,  num_clusters, show=False):# 如果图像是灰度图(单通道),将其转换为三通道if len(image.shape) == 2:image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)# 将图像的形状进行调整以便进行 K 均值聚类,提高训练速度pixels = cv2.resize(image.copy(), None, fx=0.05, fy=0.05, interpolation=cv2.INTER_LINEAR)pixels = np.float32(pixels.reshape((-1, 3)))segmented_pixels = np.float32(image.reshape((-1, 3)))# 初始化 KMeans 模型并拟合数据kmeans = KMeans(n_clusters=num_clusters)kmeans.fit(pixels)# 获取每个像素所属的簇标签labels = kmeans.predict(segmented_pixels)# 根据簇标签,将图像像素值转换为簇中心值segmented_image = kmeans.cluster_centers_[labels]segmented_image = np.uint8(segmented_image.reshape(image.shape))if show:plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)plt.title('Original Image')plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))plt.axis('off')plt.subplot(1, 2, 2)plt.title('Segmented Image')plt.imshow(segmented_image)plt.axis('off')plt.tight_layout()plt.show()return segmented_image
image_path =r"C:\Users\pc\Pictures\test\快.png"
image = cv_imread(image_path)
kmeans_img(image,4, show=True)

 使用opencv内设的kmeans函数:直接原图进行训练,然后获取每个像素点的类,速度慢。上述方法对图像进行一个缩放后,训练模型,然后用模型再预测原图的每个像素点,速度快。

def kmeans_img(image, num_clusters, show=True):# 如果图像是灰度图(单通道),将其转换为三通道if len(image.shape) == 2:image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)# image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)print(image.shape)# 将图像的形状进行调整以便进行 K 均值聚类pixels = image.reshape((-1, 3))pixels = np.float32(pixels)# 设定 kmeans 参数并运行算法criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)_, labels, centers = cv2.kmeans(pixels, num_clusters, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)# 将图像像素值转换为簇中心值centers = np.uint8(centers)segmented_image = centers[labels.flatten()]segmented_image = segmented_image.reshape(image.shape)if show:# 显示原始图像和分割后的图像plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)plt.title('Original Image')plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))plt.axis('off')plt.subplot(1, 2, 2)plt.title('Segmented Image')plt.imshow(segmented_image)plt.axis('off')plt.tight_layout()plt.show()return segmented_image

相关文章:

python 对图像进行聚类分析

import cv2 import numpy as np from sklearn.cluster import KMeans import time# 中文路径读取 def cv_imread(filePath, cv2_falgcv2.COLOR_BGR2RGB): cv_img cv2.imdecode(np.fromfile(filePath, dtypenp.uint8), cv2_falg) return cv_img# 自定义装饰器计算时间 def…...

程序员导航站

探路者 hello.alluniverse.vip 开发者导航 - Pro Developer网站导航 探路者是一款极简导航工具,致力于收录的每个站点都有其独特的作用。同时支持自定义导航,让用户快速实现个性化的导航站点。 特性概述 免费ChatGPT 装机必备 开发工具 Git精选项目 …...

BIO、NIO、AIO三者的区别及其应用场景(结合生活例子,简单易懂)

再解释三者之前我们需要先了解几个概念: 阻塞、非阻塞:是相较于线程来说的,如果是阻塞则线程无法往下执行,不阻塞,则线程可以继续往下 执行。同步、异步:是相较于IO来说的,同步需要等待IO操作完…...

深度学习YOLO图像视频足球和人体检测 - python opencv 计算机竞赛

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络4 Yolov5算法5 数据集6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习YOLO图像视频足球和人体检测 该项目较为新颖,适合作为竞赛课题方向,学长非…...

系列七、JVM的内存结构【堆(Heap)】

一、概述 一个JVM实例只存在一个堆内存,堆内存的大小是可以手动调节的。类加载器读取了类文件后,需要把类、方法、常变量放到堆内存中,保存所有引用类型的真实信息,以方便执行器执行,堆内存分为三个部分,即…...

什么是Selenium?如何使用Selenium进行自动化测试?

什么是 Selenium? Selenium 是一种开源工具,用于在 Web 浏览器上执行自动化测试(使用任何 Web 浏览器进行 Web 应用程序测试)。   等等,先别激动,让我再次重申一下,Selenium 仅可以测试Web应用…...

【蓝桥杯 第十五届模拟赛 Java B组】训练题(A - I)

目录 A、求全是字母的最小十六进制数 B、Excel表格组合 C、求满足条件的日期 D、 取数字 - 二分 (1)暴力 (2)二分 E、最大连通块 - bfs F、哪一天? G、信号覆盖 - bfs (1)bfs&#xf…...

【数据结构】手撕双向链表

目录 前言 1. 双向链表 带头双向循环链表的结构 2. 链表的实现 2.1 初始化 2.2 尾插 2.3 尾删 2.4 头插 2.5 头删 2.6 在pos位置之前插入 2.7 删除pos位置 3.双向链表完整源码 List.h List.c 前言 在上一期中我们介绍了单链表,也做了一些练习题&…...

性能测试 —— Jmeter接口处理不低于200次/秒-场景

需求:期望某个接口系统的处理能力不低于200次/秒,如何设计? ①这个场景是看服务器对某个接口的TPS值是否能大于等于200,就可以了; ②系统处理能力:说的就是我们性能测试中的TPS; ③只要设计一…...

Qt中使用QNetworkAccessManager类发送https请求时状态码返回0

前言 在项目开发中,碰到一个问题,使用QNetworkAccessManager类对象发送https请求时,状态码一直返回0,抓包分析看请求响应也是正常的。费了好大劲终于搞定了,主要是两个原因导致的。 原因一:未设置支持SSL…...

Linux - 物理内存管理 - memmap

说明 裁减内核预留内存占用,在启动log中,发现memmap占用了大块内存(446个pages)。 On node 0 totalpages: 32576 memblock_alloc_try_nid: 1835008 bytes align0x40 nid0 from0x0000000000000000 max_addr0x0000000000000000 al…...

Python爬虫动态ip代理防止被封的方法

目录 前言 一、什么是动态IP代理? 二、如何获取代理IP? 1. 付费代理IP 2. 免费代理IP 3. 自建代理IP池 三、如何使用代理IP爬取数据? 1. 使用requests库设置代理IP 2. 使用urllib库设置代理IP 3. 使用selenium库设置代理IP 四、常…...

01Urllib

1.什么是互联网爬虫? 如果我们把互联网比作一张大的蜘蛛网,那一台计算机上的数据便是蜘蛛网上的一个猎物,而爬虫程序就是一只小蜘蛛,沿着蜘蛛网抓取自己想要的数据 解释1:通过一个程序,根据Url(http://www.…...

python爬取酷我音乐 根据歌名进行爬取

# _*_ coding:utf-8 _*_ # 开发工具:PyCharm # 公众号:小宇教程import urllib.parse from urllib.request import urlopen import json import time import sys import osdef Time_1...

【深度学习】吴恩达课程笔记(五)——超参数调试、batch norm、Softmax 回归

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 【吴恩达课程笔记专栏】 【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础 【深度学习】吴恩达课程笔记(二)——浅层神经网络、深层神经网络 【深度学习】吴恩达课程笔记(三)——参数VS超参数、深度…...

腾讯云轻量级服务器和云服务器什么区别?轻量服务器是干什么用的

随着互联网的迅速发展,服务器成为了许多人必备的工具。然而,面对众多的服务器选择,我们常常会陷入纠结之中。在这篇文章中,我们将探讨轻量服务器和标准云服务器的区别,帮助您选择最适合自己需求的服务器。 腾讯云双十…...

解决:虚拟机远程连接失败

问题 使用FinalShell远程连接虚拟机的时候连接不上 发现 虚拟机用的VMware,Linux发行版是CentOs 7,发现在虚拟机中使用ping www.baidu.com是成功的,但是使用FinalShell远程连接不上虚拟机,本地网络也ping不通虚拟机&#xff0c…...

SpringBoot项目集成发邮件功能

1&#xff1a;引入依赖2&#xff1a;配置设置3&#xff1a;授权码获取&#xff1a;4&#xff1a;核心代码5&#xff1a;postman模拟验证6&#xff1a;安全注意 1&#xff1a;引入依赖 <dependency><groupId>org.apache.commons</groupId><artifactId>c…...

【Spring篇】使用注解进行开发

&#x1f38a;专栏【Spring】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【如愿】 &#x1f970;欢迎并且感谢大家指出小吉的问题 文章目录 &#x1f33a;原代码&#xff08;无注解&#xff09;&#x1f384;加上注解⭐两个注…...

Flink(六)【DataFrame 转换算子(下)】

前言 今天学习剩下的转换算子&#xff1a;分区、分流、合流。 每天出来自学是一件孤独又充实的事情&#xff0c;希望多年以后回望自己的大学生活&#xff0c;不会因为自己的懒惰与懈怠而悔恨。 回答之所以起到了作用&#xff0c;原因是他们自己很努力。 …...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...