【图像处理】:Otsu算法最大类间方差法(大津算法:附源码)
这里写自定义目录标题
- 数学原理
- 算法评价
- 参考链接
数学原理
以灰度图像为例,对于图像M×N大小的矩阵,即图像中的像素,每一个值即为像素值,其中灰度图像像素值在(0~255)之间。
主要实现前景(即目标)和背景的分割:
主要公式:
前景的像素点数占整幅图像的比例记为ω0,前景平均灰度记为μ0
背景像素点数占整幅图像的比例记为ω1,其平均灰度记为μ1
图像的总平均灰度记为μ,类间方差记为maximum。
假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值optimal threshold的像素个数记作N0
,像素灰度大于等于阈值optimalthreshold 的像素个数记作N1,
则有:
ω0 = N0 / ( M × N ) (1)
ω1 = N1 / ( M × N ) (2)
N0 + N1 = M × N (3)
1 = ω 0 + ω 1 (4)
μ = ω0 × μ0 + ω1 × μ1 (5)
maximum = ω0 × ( μ0 − μ ) 2 + ω1 × ( μ1 − μ ) 2 (6)
将式(5)代入式(6),得到等价公式(7):
maximum = ω0 × ω1 × (μ0 − μ1 ) 2 (7)
采用遍历的方法得到使类间方差maximum最大的阈值optimal threshold
实现过程:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:longc
# datetime:2023/11/16 10:30
# software: PyCharm
# function: 图像处理逻辑import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image# otsu算法
def otsu(gray):pixel_number = gray.shape[0] * gray.shape[1]mean_weigth = 1.0 / pixel_number# #统计各灰度级的像素个数,灰度级分为256级# bins必须写到257,否则255这个值只能分到[254,255)区间his, bins = np.histogram(gray, np.arange(0, 257)) # 计算灰度的直方图,计数统计区间为0-257print("bins", bins)print("his", his)# 绘制直方图plt.figure(figsize=(12, 8))# plt.hist(gray, 256, [0, 256], label='灰度级直方图') # 运行比较慢,如果电脑卡顿,可以将本行代码注释掉plt.show()final_thresh = -1final_value = -1intensity_arr = np.arange(256) # 灰度分为256级,0级到255级# ************************************************************ 采用遍历的方法得到类间方差最大的阈值for t in bins[1:-1]: # 遍历1到254级 (一定不能有超出范围的值)pcb = np.sum(his[:t]) # 小于当前灰度对应的所有像素点计数pcf = np.sum(his[t:]) # 大于当前灰度对应的所有像素点计数Wb = pcb * mean_weigth # 像素被分类为背景的概率Wf = pcf * mean_weigth # 像素被分类为目标的概率# if t == 100:# print("1>>>", intensity_arr[:t])# print("2>>>", his[:t])# print("3>>>", np.sum(intensity_arr[:t] * his[:t]))# print("4>>>", float(pcb))# print("5>>>", np.sum(intensity_arr[:t] * his[:t]) / float(pcb))mub = np.sum(intensity_arr[:t] * his[:t]) / float(pcb) # 分类为背景的像素均值muf = np.sum(intensity_arr[t:] * his[t:]) / float(pcf) # 分类为目标的像素均值# print mub, mufvalue = Wb * Wf * (mub - muf) ** 2 # 计算目标和背景类间方差# 采用遍历的方法得到使类间方差value最大的阈值final_value和二值化对应最大的final_threshif value > final_value:final_thresh = t # 进行二值化的操作值final_value = valueprint("final_thresh>>>", final_thresh)print("final_value>>>", final_value)# 二值化操作处理# final_img = gray.copy()# print(final_thresh)# final_img[gray > final_thresh] = 255# final_img[gray < final_thresh] = 0# cv2.imwrite("final_img.jpg", final_img)plt.imshow(gray)plt.show()# 二值化图像(多种方法对比)ret, binary_image = cv2.threshold(gray, final_thresh-15, 255, cv2.THRESH_BINARY)plt.imshow(binary_image, cmap='gray')plt.show()# ret, binary_image1 = cv2.threshold(gray, final_thresh, 255, cv2.THRESH_TRUNC)# plt.imshow(binary_image1)# plt.show()## ret, binary_image2 = cv2.threshold(gray, final_thresh, 255, cv2.THRESH_TOZERO)# plt.imshow(binary_image2)# plt.show()## ret, binary_image3 = cv2.threshold(gray, final_thresh, 255, cv2.THRESH_TOZERO_INV)# plt.imshow(binary_image3)# plt.show()imggray = cv2.imread("IMG_0004_3.jpg", 0)
plt.title("imggray")
plt.imshow(imggray, cmap='gray')
plt.show()# 进行OSTU运算
otsu(imggray)
算法评价
优点:算法简单,当目标与背景的面积相差不大时,能够有效地对图像进行分割。
缺点:类间方差法对噪声以及目标大小十分敏感,它仅对类间方差为单峰的图像产生较好的分割效果。当目标与背景的大小比例悬殊时(例如受光照不均、反光或背景复杂等因素影响),类间方差准则函数可能呈现双峰或多峰,或者目标与背景的灰度有较大的重叠时,效果不不是很理想。
原因:该方法忽略了图像的空间信息,同时将图像的灰度分布作为分割图像的依据,对噪声也相当敏感
原文链接:
参考链接
数字图像处理——最大类间方差法(OTSU)图像阈值分割实例
相关文章:
【图像处理】:Otsu算法最大类间方差法(大津算法:附源码)
这里写自定义目录标题 数学原理算法评价参考链接 数学原理 以灰度图像为例,对于图像MN大小的矩阵,即图像中的像素,每一个值即为像素值,其中灰度图像像素值在(0~255)之间。 主要实现前景(即目标)和背景的分割: 主要公式…...
【uni-app】设置背景颜色相关
1. 全局页面背景色设置: 在App.vue的style样式表中设置 <style> page {background-color: #F0AD4E; } </style> 2. 顶部导航栏背景色设置: 在pages.json页面路由中,globalStyle设置 "globalStyle": {"navi…...
工厂模式-C++实现
工厂模式是一个创建型设计模式,即“对象创建模式”,通过这种模式可以绕开new,来避免对象创建过程中,也就是new的方法造成的紧耦合,从而支持对象创建的稳定。 工厂模式中引入了一个工厂类,该工厂负责根据客…...

安装应用与免安装应用差异对比
差异 安装的程序和免安装的应用程序之间有以下几个方面的差别: 安装过程:安装的程序需要通过一个安装程序或安装脚本进行安装。这个过程通常会将应用程序的文件和依赖项复制到指定的目录,并进行一些配置和注册操作。免安装的应用程序则不需要…...
FiscoBcos使用Go调用合约
环境: fisco2.8.0 go 1.17 go-sdk 1.0.0 solidity 0.4.25 前言 请提前启动好四个fisco节点。 请准备好一个属于此fisco节点的账户私钥【待会调用合约和部署合约会用到】 此文章将讲解 官方文档使用gosdk部署helloworld合约并调用其方法 合约开发样例 官网提示 G…...

自然语言处理(NLP)-spacy简介以及安装指南(语言库zh_core_web_sm)
spacy 简介 spacy 是 Python 自然语言处理软件包,可以对自然语言文本做词性分析、命名实体识别、依赖关系刻画,以及词嵌入向量的计算和可视化等。 1.安装 spacy 使用 “pip install spacy" 报错, 或者安装完 spacy,无法正…...

CTF-PWN-tips
文章目录 overflowscanfgetreadstrcpystrcat Find string in gdbgdbgdb peda Binary ServiceFind specific function offset in libc手工自动 Find /bin/sh or sh in library手动自动 Leak stack addressFork problem in gdbSecret of a mysterious section - .tlsPredictable …...
《Effective C++》条款21
必须返回对象时,别妄想返回其reference 如果你的运算符重载函数写成了返回reference的形式: class A { public:A(int a,int b):x(a),y(b){}friend const A& operator*(const A& a, const A& b); private:int x;int y; }; const A& opera…...

决策树,sql考题,30个经典sql题目
大数据: 2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开 测开的话,你就得学数据库,sql,oracle,尤其sql要学&#x…...
【ES6.0】- 扩展运算符(...)
【ES6.0】- 扩展运算符... 文章目录 【ES6.0】- 扩展运算符...一、概述二、拷贝数组对象三、合并操作四、参数传递五、数组去重六、字符串转字符数组七、NodeList转数组八、解构变量九、打印日志十、总结 一、概述 **扩展运算符(...)**允许一个表达式在期望多个参数࿰…...
关于Java中的深拷贝与浅拷贝
Java中的深拷贝和浅拷贝是针对对象和数组等引用数据类型的复制操作。 浅拷贝(Shallow Copy): 对于基本数据类型,浅拷贝直接复制其值。对于引用数据类型,浅拷贝只复制对原对象的引用,而不是复制对象本身。因…...

13.真刀实枪做项目---博客系统(页面设计)
文章目录 1.预期效果1.1博客列表页效果1.2博客详情页效果1.3博客登陆页效果1.4博客编辑页效果 2.实现博客列表页2.1实现导航栏2.2实现版心2.3实现个人信息2.4实现博客列表2.5博客列表页完整代码 3.实现博客正文页3.1引入导航栏3.2引入版心3.3引入个人信息3.4实现博客正文3.5博客…...
VScode 配置用户片段
文件->首选项->配置用户片段->新建全局用户片段 后续就可以通过vv3来直接生成下面的代码 {// Place your 全局 snippets here. Each snippet is defined under a snippet name and has a scope, prefix, body and // description. Add comma separated ids of the l…...

Fedora 项目近日发布了 Fedora Linux 39
导读几经推迟之后,Fedora 项目近日发布了 Fedora Linux 39,这是红帽公司赞助的面向大众的 GNU/Linux 发行版的最新稳定版本,采用了最新的技术和开源应用程序。 Fedora Linux 39 由 Linux 内核 6.5 支持,并提供了一些最新的桌面环境…...

Uniapp连接iBeacon设备——实现无线定位与互动体验(理论篇)
目录 前言: 一、什么是iBeacon技术 二、Uniapp连接iBeacon设备的准备工作 硬件设备: 三、Uniapp连接iBeacon设备的实现步骤 创建Uniapp项目: 四、Uniapp连接iBeacon设备的应用场景 室内导航: 五、Uniapp连接iBeacon设备的未来…...

GCD:异步同步?串行并发?一文轻松拿捏!
GCD 文章目录 GCD进程线程进程与线程的关系进程与线程的区别 任务(执行的代码)队列线程与队列的关系 队列任务**同步执行任务(sync)**辅助方法**异步执行任务(async)**总结栅栏任务迭代任务 队列详细属性QoSAttributes…...
学习c#的第十七天
目录 C# 异常处理 异常的原因 System.Exception 类 如何处理异常 常见的异常类 throw 语句 throw 表达式 try 语句 try-catch 语句 try-finally 语句 try-catch-finally 语句 when 异常筛选器 异步和迭代器方法中的异常 C# 异常处理 C # 中的异常提供了结构化、统…...

龙芯 操作系统选择和安装
龙芯3a5000及之后的cpu底层架构已经从mips64el改为了loongarch64 所以这里分了2种来说明,分别对应3a4000之前的和3a5000之后的 龙芯的系统安装难点在于操作系统的选取和引导 一、烧录工具 制作安装盘使用常规的烧录工具是不行滴,会提示没有\boot\initrd…...

【开源】基于JAVA的智能停车场管理系统
项目编号: S 005 ,文末获取源码。 \color{red}{项目编号:S005,文末获取源码。} 项目编号:S005,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容A. 车主端功能B. 停车工作人员功能C. 系…...

使用IDEA 将Eclipse java工程转为maven格式
使用IDEA 将Eclipse java工程转为maven格式 ①使用idea打开项目,在项目根目录下右键选择 Add Framework Support 选择 maven ,引入maven ②找到项目中的.classpath文件或者lib目录 根据.classpath文件或者lib目录中列举的jar包名,将其依次手…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...