【论文阅读】(VAE-GAN)Autoencoding beyond pixels using a learned similarity metric
论文地址;[1512.09300] Autoencoding beyond pixels using a learned similarity metric (arxiv.org) /
一、Introduction
主要讲了深度学习中生成模型存在的问题,即常用的相似度度量方式(使用元素误差度量)对于学习良好的生成模型存在一定的障碍,并提出了一种新的方法——使用学习到的相似度度量方式来改善生成模型的性能。同时,该部分还介绍了如何学习这种相似度度量方式,即通过联合训练变分自编码器(VAE)和生成对抗网络(GAN)来使用GAN鉴别器来度量样本之间的相似度。

注意:
使用学习相似性度量训练的生成模型与使用元素误差度量训练的模型的区别在于相似性度量的方式不同。使用元素误差度量训练的模型是默认的选择,它使用像平方误差这样的逐元素度量来衡量重建质量。而使用学习相似性度量训练的生成模型则可以使用更高级的、基于特征的度量来衡量重建质量,并且可以在学习中提供更好的数据分布建模。这种方法可以更好地捕捉图像数据的特性,例如对平移等变性的不变性,从而提高生成模型的性能。
二、Autoencoding with learned similarity
本章节主要介绍了如何使用学习到的相似度度量来改进生成模型,特别是在学习像变分自编码器(VAE)这样的模型时,元素级别的相似度度量会成为训练信号的主要组成部分。文章提出了一种基于联合训练VAE和生成对抗网络(GAN)的方法,将GAN鉴别器中学习到的特征表示作为VAE重构目标的基础,从而用特征级别的相似度度量替换元素级别的误差,更好地捕捉数据分布。文章还介绍了如何在人脸图像上应用该方法,并展示了该方法比使用元素级别相似度度量的VAE在视觉保真度方面表现更好的结果。此外,文章还展示了该方法学习到的嵌入空间具有高级别的抽象视觉特征,可以通过简单的算术操作进行修改。
三、Related Work
讨论了之前的相关研究,特别关于使用自编码器进行特征学习和图像重建的研究它提到了一些使用变分自编码器和生成对抗网络方法来提高自编码器重建质量和学习更好的征表示的研究。此外,该部分还介绍了一些特征匹配和相似度度量的方法来比较图像相性的研究。
总结:
本文介绍了一种基于学习相似度度量的自编码器,该自编码器结合了变分自编码器和生成对抗网络的优点,使用GAN鉴别器中学习到的特征表示作为VAE重构目标的基础,从而用特征级别的误差代替元素级别的误差更好地捕捉数据分布。作者在人脸图像数据集上的实验结果表明,与使用元素级别相似度度量的VAE相比,该方法在视觉保真度方面表现更好,同时也展示了该方法学习到了一个内在空间,其中高级别的抽象视觉特征(如戴眼镜)可以通过简单的算术运算进行修改。
相关文章:
【论文阅读】(VAE-GAN)Autoencoding beyond pixels using a learned similarity metric
论文地址;[1512.09300] Autoencoding beyond pixels using a learned similarity metric (arxiv.org) / 一、Introduction 主要讲了深度学习中生成模型存在的问题,即常用的相似度度量方式(使用元素误差度量)对于学习良好的生成模型存在一定…...
verilog之wire vs reg区别
文章目录 一、wire vs reg二、实例一、wire vs reg wire线网: 仅支持组合逻辑建模必须由assign语句赋值不能在always块中驱动用于连接子模块的输出用于定义模块的输入端口reg寄存器: 可支持组合逻辑或时序逻辑建模必须在always块中赋值二、实例 wire [7:0] cnt; assign cnt …...
力扣面试经典150题详细解析
刷题的初心 众所周知,算法题对于面试大厂是必不可缺的一环,而且对于提高逻辑思维能力有着不小的提升。所以,对于程序员来讲,无论刚入行,还是从业多年,保持一个清醒的头脑,具备一个良好的设计思…...
【Java 进阶篇】唤醒好运:JQuery 抽奖案例详解
在现代社交网络和电商平台中,抽奖活动成为吸引用户、提升用户参与度的一种常见手段。通过精心设计的抽奖页面,不仅可以增加用户的互动体验,还能在一定程度上提高品牌的知名度。本篇博客将通过详细解析 JQuery 抽奖案例,带领你走进…...
数据处理生产环境_利用MurmurHash3算法在Spark和Scala中生成随机颜色
需求 根据给定的轨迹编号在这一列后面生成随机颜色_16 输入数据 ("吃饭", "123"), ("吃饭", "宋江"), ("郭靖", "宋江"), ("杨过", "奥特曼"), ("周芷若", "张无忌"),…...
便利工具分享:一个proto文件的便利使用工具
最近在研究序列化,每次的proto文件手敲生成代码指令都很麻烦,干脆自己写一个泛用脚本,这样以后使用时候就方便了。 废话不多说,首先上代码: #!/bin/bash # 检查是否提供了文件名参数 if [ -z "$1" ]; then…...
LeetCode704.二分查找及二分法
每日一题:LeetCode704.二分查找 LeetCode704.二分查找知识点:二分法解题代码 LeetCode704.二分查找 问题描述:给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中…...
2023年R1快开门式压力容器操作证模拟考试题库及R1快开门式压力容器操作理论考试试题
题库来源:安全生产模拟考试一点通公众号小程序 2023年R1快开门式压力容器操作证模拟考试题库及R1快开门式压力容器操作理论考试试题是由安全生产模拟考试一点通提供,R1快开门式压力容器操作证模拟考试题库是根据R1快开门式压力容器操作最新版教材&#…...
探索NLP中的核心架构:编码器与解码器的区别
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...
解决:Error: Missing binding xxxxx\node_modules\node-sass\vendor\win32-x64-83\
一、具体报错 二、报错原因 这个错误是由于缺少 node-sass 模块的绑定文件引起的。 三、导致原因 3.1、环境发生了变化 3.2、安装过程出现问题 四、解决方法步骤: 4.1、重新构建 node-sass 模块 npm rebuild node-sass 4.2、清除缓存并重新安装依赖 npm c…...
科研学习|科研软件——面板数据、截面数据、时间序列数据的区别是什么?
一、数据采集方式不同 面板数据是通过在多个时间点上对同一组体进行观测而获得的数据。面板数据可以是横向面板数据,即对同一时间点上不同个体的观测,也可以是纵向面板数据,即对同一个体在不同时间点上的观测。采集面板数据需要跟踪相同的个体…...
【UE5】物体沿样条线移动
目录 效果 步骤 一、使用样条线创建路径 二、创建沿样条线路径移动的物体 三、定义可移动物体的生成器 效果 步骤 一、使用样条线创建路径 先创建一个Actor蓝图,这里命名为“BP_Line” 该蓝图中只需添加一个样条组件 将“BP_Line”拖入场景中 按住Alt鼠标左键…...
Qt控件按钮大全
按钮 在 Qt 里,最常用使用的控件就是按钮了,有了按钮,我们就可以点击,从而响应事件,达到人机交互的效果。不管是嵌入式或者 PC 端,界面交互,少不了按钮。Qt 按钮部件是一种常用的部件之一,Qt 内置了六种按钮部件如下: (1) QPushButton:下压按钮 (2) QToolBu…...
软件工程--软件过程学习笔记
本篇内容是对学校软件工程课堂内容的记录总结,部分也来源于网上查找的资料 软件过程基础 软件过程是指在软件开发过程中,经过一系列有序的步骤和活动,从问题定义到最终软件产品交付和维护的全过程。这个过程旨在确保软件项目能够按时、按预…...
高校教师资格证备考
高等教育制度 关于人的全面发展和个体发展的关系,说法正确的是(ABC)。 A.个体发展是在全面发展基础上的选择性发展 B.全面发展是个体发展的前提和基础 C.个体发展又是全面发展的动力 D.个体发展是全面发展的前提和基础...
Git通过rebase合并多个commit
在使用 Git 作为版本控制的时候,我们可能会由于各种各样的原因提交了许多临时的 commit,而这些 commit 拼接起来才是完整的任务。那么我们为了避免太多的 commit 而造成版本控制的混乱,通常我们推荐将这些 commit 合并成一个。 1. 查看提交历…...
ROS 学习应用篇(八)ROS中的坐标变换管理之tf广播与监听的编程实现
偶吼吼胜利在望,冲冲冲 老规矩新建功能包 工作空间目录下/src下开启终端输入 catkin_create_pkg learning_tf roscpp rospy tf turtlesim 如何实现tf广播 引入库 c python …...
计算机算法分析与设计(23)---二分搜索算法(C++)
文章目录 1. 算法介绍2. 代码编写 1. 算法介绍 1. 二分搜索(英语:binary search),也称折半搜索(英语:half-interval search)、对数搜索(英语:logarithmic search…...
前置语音群呼与语音机器人群呼哪个更好
最近通过观察自己接到的营销电话,通过语音机器人外呼的量应该有所下降。同时和客户交流获取到的信息,也是和这个情况类似,很多AI机器人群呼的量转向了OKCC前置语音群呼。询问原因,说是前置语音群呼转化更快,AI机器人群…...
『Element Plus の 百科大全』
Element Plus 官网 点击跳转...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
