ChatGPT简介及基本概念
点击跳转专栏=>Unity3D特效百例 | 点击跳转专栏=>案例项目实战源码 |
---|---|
点击跳转专栏=>游戏脚本-辅助自动化 | 点击跳转专栏=>Android控件全解手册 |
点击跳转专栏=>Scratch编程案例 | 点击跳转=>软考全系列 |
点击跳转=>蓝桥系列 | 点击跳转=>ChatGPT和AIGC |
👉关于作者
专注于Android/Unity和各种游戏开发技巧,以及各种资源分享(网站、工具、素材、源码、游戏等)
有什么需要欢迎底部卡片私我,获取更多支持,交流让学习不再孤单。
👉实践过程
😜简介
ChatGPT(Generative Pre-trained Transformer)是OpenAI于2022年11月推出的聊天机器人。它建立在OpenAI的GPT-3.5系列大语言模型之上,并结合监督学习和强化学习技术进行了微调。
ChatGPT是一种基于深度学习的自然语言生成模型,是当前自然语言处理领域最具代表性的技术之一。其核心技术包括预训练、Transformer网络和自回归模型。
预训练是ChatGPT的核心技术之一。预训练是指在大规模语料库上对模型进行训练,使其能够自动学习语言的规律和规则。在预训练过程中,ChatGPT使用了海量的无标签文本数据,比如维基百科和新闻文章等。通过这些数据的训练,ChatGPT可以学习到自然语言的语法、句法和语义等信息,从而能够生成自然流畅的语言表达。
ChatGPT作为一种自然语言生成模型,其核心技术包括预训练、Transformer网络和自回归模型。预训练使得模型能够自动学习语言规律和规则,Transformer网络能够有效处理长文本序列,自回归模型能够生成连贯自然的文本内容。这些技术的结合使得ChatGPT成为了自然语言处理领域最具代表性的技术之一,应用于多种领域,为人们提供更加便捷高效的交流和沟通方式。
😜GPT3.5 与 4.0(Plus)区别
虽然ChatGPT和ChatGPTPlus都是人工智能语言模型,但是它们在性能上存在着巨大的差异。ChatGPT Plus具有更强的表达能力、更高的准确性和更强的适应性。下面将从多个方面对它们进行比较:
- 参数数量
ChatGPT Plus具有更多的参数,也就意味着它具有更高的表达能力和更强的拟合能力。ChatGPT的参数数量只有1750万,而ChatGPT Plus的参数数量达到了15亿,相当于ChatGPT的10倍。 - 训练数据量
ChatGPT Plust比ChatGPTl练数据量多了14倍,这就使得ChatGPT Plus在处理各种语言、场景、领域的文本时更加得心应手。ChatGPT Plus的训练数据来自于互联网上的各种语料库,包括维基百科、网页文本、书籍等,因此它的泛化能力更强。 - 对话回复质量
ChatGPT Plus在生成对话回复方面表现更好,它的对话回复更加准确、流畅,回答问题的能力更加全面。在评价对话系统的任务中,ChatGPT Plus相较于ChatGPT获得了更高的分数。 - 支持的语言数量
ChatGPT Plus支持的语言数量比ChatGPT更多。ChatGPTPlus可以支持70多种语言,而ChatGPT只能支持英语。 - 响应速度
ChatGPT Plus需要更多的计算资源和更长的时间来生成回复,因为它的参数数量更多。这意味着,在同样的硬件条件下,ChatGPTPlus的响应速度可能会比ChatGPT更慢。
ChatGPT适用于
● 需要基本的聊天和问答功能的个人用户
● 需要处理英语文本的用户
● 计算资源有限的用户
ChatGPT Plus适用于
● 需要高度准确性和自然度的企业用户,例如客服中心和智能助手。
● 需要处理多语言文本的用户
● 需要处理领域特定语言和术语的用户
● 具有充足计算资源的用户
😜什么是Token
当我们在ChatGPT中处理文本时,文本会被分割成一系列的tokens,这种分割的方式有助于模型更好地理解和处理文本。
一个token可以是一个字符、一个单词或者一个标点符号。
例如,句子 “Hello, how are you?” 可能被分割成以下tokens:[“Hello”, “,”, “how”, “are”, “you”, “?”]
在这个例子中,每个单词和标点符号都被视为一个token。分割成tokens的过程通常会考虑到语言的特点和常见的处理需求。例如,在英语中,常见的缩写词可能会被视为一个单独的token,比如 “I’m” 或者 “don’t”。这样做可以确保模型正确地处理这些常见的缩写词。
当我们将文本输入到ChatGPT模型中时,模型会按照token的顺序逐个处理。模型可以根据前面的tokens来预测下一个token,这样就可以逐步生成输出文本。在模型生成的输出中,我们也会得到一系列的tokens。我们可以将这些tokens重新组合成可读的文本形式,以便呈现给用户。
需要注意的是,tokens的数量会影响到模型的计算成本和响应时间。较长的文本会被分割成更多的tokens,因此在处理文本时需要考虑到tokens的数量。较长的输入文本可能需要更长的处理时间,而较长的输出文本可能会增加响应时间。因此,为了获得更好的性能,我们需要在文本处理中平衡tokens的数量和模型的要求。
😜什么是Prompt
Prompt(提示)是指用户向ChatGPT提供的初始输入或问题,它是用来引导对话的一段文本或问题。
Prompt可以是一个简短的句子、一个问题或者一个完整的对话段落。
在与ChatGPT进行交互时,用户可以使用prompt来指导对话的方向或者提供上下文信息,以便模型能够更好地理解用户的意图并生成相关的回复。
Prompt通常以自然语言形式提供,但也可以是一些特殊的标记或指令。
例如,如果用户想要问ChatGPT关于天气的问题,他们可以使用以下prompt: “今天天气如何?” 或者 “请告诉我今天的天气情况。”
Prompt对于ChatGPT的性能和回复的准确性具有重要影响。
一个清晰、具体和相关的prompt可以帮助ChatGPT产生更有意义的回复。因此,选择和设计合适的prompt是与ChatGPT进行交互的关键一步。
😜对话上下文
上下文(Context)是指在对话中先前的对话历史和相关信息,它提供了对当前对话的背景和语境。
上下文可以包括用户的先前发言、ChatGPT的回复以及任何其他相关的对话内容。
在与ChatGPT进行交互时,上下文对于理解用户的意图以及生成相关的回复非常重要。ChatGPT会根据先前的对话历史和上下文来理解用户的问题,并尝试生成与上下文相关的回复。
上下文可以是一个或多个对话轮次的文本。
例如,在一个对话中,上下文可以是用户的先前问题和ChatGPT的回复。ChatGPT会根据这些上下文信息来生成下一轮的回复。
为了保持对话的连贯性和一致性,通常会将先前的对话历史作为上下文传递给ChatGPT。
这样,ChatGPT就能够更好地理解用户的意图,并生成与之前对话相关的回复。 需要注意的是,上下文的长度可能会受到模型的限制。较长的上下文可能会被截断或忽略,因此在设计上下文时需要注意保持信息的相关性和重要性。
👉其他
📢作者:小空和小芝中的小空
📢转载说明-务必注明来源:https://zhima.blog.csdn.net/
📢这位道友请留步☁️,我观你气度不凡,谈吐间隐隐有王者霸气💚,日后定有一番大作为📝!!!旁边有点赞👍收藏🌟今日传你,点了吧,未来你成功☀️,我分文不取,若不成功⚡️,也好回来找我。
相关文章:

ChatGPT简介及基本概念
点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列点击跳转>ChatGPT和AIGC 👉关于作者 专…...

学习模拟简明教程【Learning to simulate】
深度神经网络是一项令人惊叹的技术。 有了足够的标记数据,他们可以学习为图像和声音等高维输入生成非常准确的分类器。 近年来,机器学习社区已经能够成功解决诸如对象分类、图像中对象检测和图像分割等问题。 上述声明中的加黑字体警告是有足够的标记数…...

电子学会C/C++编程等级考试2021年12月(一级)真题解析
C/C++等级考试(1~8级)全部真题・点这里 第1题:输出整数部分 输入一个双精度浮点数f, 输出其整数部分。 时间限制:1000 内存限制:65536输入 一个双精度浮点数f(0 < f < 100000000)。输出 一个整数,表示浮点数的整数部分。样例输入 3.8889样例输出 3 答案: //参…...
数字游戏
题目描述 小 K 同学向小 P 同学发送了一个长度为 8 的 01 字符串 来玩数字游戏,小 P 同学想要知道字符串中究竟有多少个 1。 注意:01 字符串为每一个字符是 0 或者 1 的字符串,如“101”(不含双引号)为一个长度为 3 …...
k8s pod 处于Terminating的原因分析和解决处理——筑梦之路
之前整理了一下各种资源长时间无法回收,解决处理的命令行 k8s 各种资源Terminationg状态处理 —— 筑梦之路_k8s自定义资源修改状态-CSDN博客 这里具体整理下pod长时间处于Terminating状态的相关知识,主要是对前面的补充和完善,作为笔记记录…...

西南科技大学814考研二
C语言数据结构与算法 线性表 顺序表(静态分配内存) #include <stdio.h> #include <stdbool.h> //静态顺序表 #define MAX_SIZE 8 //顺序表储存的数据类型 typedef int ElemType; typedef struct {ElemType data[MAX_SIZE];int length; }SeqList; //初始化顺序表…...

oracle21c报错 【ORA-65096: 公用用户名或角色名无效】
1.数据库版本 oracle21c 2.问题提示 创建用户提示【ORA-65096: 公用用户名或角色名无效】 create user 自定义用户名 identified by 密码;--例:用户为test1,密码为123456 create user test1 identified by 123456;三.解决办法及结果 oracle11g之后的版本ÿ…...
C++ 递增/递减运算符重载
作用: 通过重载递增运算符,实现自己的整型数据 总结: 前置递增返回引用,后置递增返回值 递增 #include<iostream> using namespace std;class MyInteger { private:int m_Num 0; public:friend ostream& operator<…...
Android 13.0 无源码app增加授予相关权限
1.概述 在13.0的系统rom产品定制化开发中,对于一些无源码app增加一些权限,比如悬浮窗权限,由于app内部没申请这个权限, 所以需要系统适配默认授予这个权限,就需要在PMS解析安装app的时候 授予悬浮窗权限就可以了 2.无源码app增加授予相关权限的核心类 frameworks/base/cor…...

CI/CD相关概念学习
文章目录 CI/CD相关概念学习前言CI/CD相关概念介绍集成地狱持续集成持续交付持续部署Devops CI/CD相关应用介绍JenkinsTekton PipelinesSpinnakerTravis CIGoCD CI/CD相关概念学习 前言 本文主要是介绍一些 CI/CD 相关的概念,通过阅读本文你将快速了解 CI/CD 是什么…...

一、认识STM32
目录 一、初识STM32 1.1 STM32的命名规则介绍 1.2 STM32F103ZET6资源配置介绍 二、如何识别芯片管脚 2.1 如何寻找 IO 的功能说明 三、构成最小系统的要素 一、初识STM32 1.1 STM32的命名规则介绍 以 STM32F103ZET6 来讲解下 STM32 的命名方法: &…...
vue-router的编程式导航有哪些方法?
Vue Router 提供了几种编程式导航的方法,主要包括以下几种: router.push(location, onComplete?, onAbort?):跳转到新的 URL,类似于 <router-link> 的 to 属性。可以指定路径或者命名的路由。 router.replace(location, …...
连接服务器上mysql数据库
1. 首先在服务器的安全组上设置开放3306端口(默认是这个,有自定义可以酌情更改) 2. 更改服务器上的数据库配置文件vi /etc/mysql/my.cnf 增加下面bind- address配置 [mysqld] bind-address0.0.0.0 3. 授予本地IP地址的主机连接权限 - 创建…...

IDEA 中设置 File Header 以及自定义类、方法注释模板的方法
目录 1 设置 File Header2 自定义类、方法注释生成类注解模板生成方法注解模板 1 设置 File Header File -> Settings -> File and Code Templates -> Includes -> File Header -> 编辑 2 自定义类、方法注释 File -> Settings -> Live Templates -&g…...

【数据结构】图的存储结构及实现(邻接表和十字链表)
一.邻接矩阵的空间复杂度 假设图G有n个顶点e条边,则存储该图需要O(n^2) 不适用稀疏图的存储 二.邻接表 1.邻接表的存储思想: 对于图的每个顶点vi,将所有邻接于vi的顶点链成一个单链表,称为顶点vi的边表(…...

ROS Turtlebot3多机器人编队导航仿真
文章目录 前言一、Gzazebo中加载多台Turtlebot3机器人二、RVIZ中加载多个Turtlebot3机器人三.多机器人编队导航总结 前言 前面已经实现了在gazebo仿真环境中机器人一字型编队、三角形编队、N字型编队等仿真,接下来考虑多机器人编队在编队行进过程中的避障问题&…...
端口配置错误,导致RabbitMq启动报错
SpringBoot启动,报错如下: 2023-11-19 01:33:43.030 UID[] [] [AMQP Connection 116.xxx.xx.xxx:15672] ERROR com.rabbitmq.client.impl.ForgivingExceptionHandler - An unexpected connection driver error occured java.net.SocketException: Sock…...

<MySQL> 什么是JDBC?如何使用JDBC进行编程?
目录 一、JDBC是什么? 二、JDBC常用接口和类 2.1 DataSource 2.2 Connection 2.3 Statement 2.4 ResultSet 三、JDBC的使用 3.1 获得数据库驱动包 3.2 添加到项目依赖 3.3 描述数据库服务器 3.4 建立数据库连接 3.6 执行SQL语句和接收返回数据 3.7 释放…...

基于安卓android微信小程序的装修家装小程序
项目介绍 巧匠家装小程序的设计主要是对系统所要实现的功能进行详细考虑,确定所要实现的功能后进行界面的设计,在这中间还要考虑如何可以更好的将功能及页面进行很好的结合,方便用户可以很容易明了的找到自己所需要的信息,还有系…...

基于SSM的小区物业管理系统设计与实现
末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...

高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...
python读取SQLite表个并生成pdf文件
代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...
大模型真的像人一样“思考”和“理解”吗?
Yann LeCun 新研究的核心探讨:大语言模型(LLM)的“理解”和“思考”方式与人类认知的根本差异。 核心问题:大模型真的像人一样“思考”和“理解”吗? 人类的思考方式: 你的大脑是个超级整理师。面对海量信…...