当前位置: 首页 > news >正文

分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测

分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测

目录

    • 分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测,运行环境Matlab2023b及以上;
2.优化参数为:学习率,隐含层节点,正则化参数。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测
function [gbest,g,Convergence_curve]=PSO(N,T,lb,ub,dim,fobj)
%% 定义粒子群算法参数
% N 种群 T 迭代次数 
%% 随机初始化种群
D=dim;                   %粒子维数
c1=1.5;                 %学习因子1
c2=1.5;                 %学习因子2
w=0.8;                  %惯性权重Xmax=ub;                %位置最大值
Xmin=lb;               %位置最小值
Vmax=ub;                %速度最大值
Vmin=lb;               %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:Npbest(i)=fobj(x(i,:)); 
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:Nif(pbest(i)<gbest)g=p(i,:);gbest=pbest(i);end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:Tifor j=1:N%%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%if (fobj(x(j,:))) <pbest(j)p(j,:)=x(j,:);pbest(j)=fobj(x(j,:)); 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测

分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测 目录 分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现PSO…...

Python OpenCV 视频抽帧处理并保存

上篇文章中基于OpenCV实现图像处理后&#xff0c;类似的&#xff0c;也可以对视频进行处理。OpenCV库可以将视频的每一帧读取出来&#xff0c;然后对每一帧图像做相应的操作&#xff0c;并保存成新的视频。 1. 读取视频&#xff0c;获取相关参数 import cv2 import numpy as…...

英伟达AI布局的新动向:H200 GPU开启生成式AI的新纪元

英伟达Nvidia是全球领先的AI计算平台和GPU制造商&#xff0c;近年来一直在不断推出创新的AI产品和解决方案&#xff0c;为各行各业的AI应用提供强大的支持。 最近&#xff0c;英伟达在GTC 2023大会上发布了一款专为训练和部署生成式AI模型的图形处理单元&#xff08;GPU&#…...

Windows11 python3.12 安装pyqt6 pyqt6-tools

Windows11 python3.12 安装pyqt6比较容易&#xff0c;但pyqt6-tools一直安装不上去。出错信息如下&#xff1a; (venv) PS D:\python_project\pyqt6> pip install pyqt6-tools Collecting pyqt6-toolsUsing cached pyqt6_tools-6.4.2.3.3-py3-none-any.whl (29 kB) Collec…...

反弹Shell

概述 反弹shell&#xff08;reverse shell&#xff09;就是控制端监听在某TCP/UDP端口&#xff0c;被控端发起请求到该端口&#xff0c;并将其命令行的输入输出转到控制端。reverse shell与telnet&#xff0c;ssh等标准shell对应&#xff0c;本质上是网络概念的客户端与服务端…...

Guava RateLimiter的限流机制详解

限流是保护高并发系统的三种有效方法之一。另外两个分别是缓存和降级。限流在很多场景中都会使用到限制并发数和请求数。例如&#xff0c;在限时抢购的情况下&#xff0c;限流可以保护您自己的系统和下游系统不被巨大的流量淹没。 限流的目的是通过限制并发访问或请求或者限制…...

详解nginx的root与alias

在Nginx中&#xff0c;root和alias指令都可以用来指定Web服务器中的文件根目录。不过&#xff0c;它们之间有一些关键的区别。 root指令指定的是服务器根目录&#xff0c;是用于处理HTTP请求时所使用的默认根目录。例如&#xff0c;若root /var/www/html;&#xff0c;则访问htt…...

在HBuilderX中配置Vue Router的步骤

以下是在HBuilderX中配置Vue Router的步骤&#xff1a; 在项目中安装Vue Router&#xff0c;可以使用npm或yarn命令进行安装。 在src目录下创建routers.js文件&#xff0c;并在该文件中编写路由相关代码&#xff0c;例如&#xff1a; import Vue from vue import Router from …...

通过接口抓取公众号信息并群发

总体步骤 通过非官方接口&#xff0c;登陆公众号获取cookie、token通过token拼接需要的参数&#xff0c;请求被抓取的公众号列表数据通过列表数据获取文章内容解析文章内容并通过官方接口创建草稿通过非官方接口群发创建的草稿(非认证用户&#xff0c;已认证用户可以通过官方接…...

Python基础入门----如何通过conda搭建Python开发环境

文章目录 使用 conda 搭建Python开发环境是非常方便的,它可以帮助你管理Python版本、依赖库、虚拟环境等。以下是一个简单的步骤,演示如何通过 conda 搭建Python开发环境: 安装conda: 如果你还没有安装 conda,首先需要安装Anaconda或Miniconda。Anaconda是一个包含很多数据…...

计算机网络的体系结构

目录 一. 计算机体系结构的形成二. 协议与层次划分2.1 数据传输过程2.2 什么是网络协议2.3 网络协议的三要素2.4 协议有两种形式2.4 各层协议2.5 什么是复用和分用 \quad 一. 计算机体系结构的形成 \quad 计算机网络是一个非常复杂的系统, 相互通信的两个计算机系统必须高度协调…...

cesium雷达扫描(模糊圆效果)

cesium雷达扫描(模糊圆效果) 1、实现思路 使用ellipse方法加载圆型,修改ellipse中‘material’方法重写自己的glsl来实现当前效果 1、示例源码 index.html <!DOCTYPE html> <html lang="en"><head><!<...

windows安装wsl2以及ubuntu

查看自己系统的版本 必须运行 Windows 10 版本 2004 及更高版本&#xff08;内部版本 19041 及更高版本&#xff09;或 Windows 11 才能使用以下命令 在设置&#xff0c;系统里面就能看到 开启windows功能 直接winQ搜 开启hyber-V、使用于Linux的Windows子系统、虚拟机平…...

音视频项目—基于FFmpeg和SDL的音视频播放器解析(十二)

介绍 在本系列&#xff0c;我打算花大篇幅讲解我的 gitee 项目音视频播放器&#xff0c;在这个项目&#xff0c;您可以学到音视频解封装&#xff0c;解码&#xff0c;SDL渲染相关的知识。您对源代码感兴趣的话&#xff0c;请查看基于FFmpeg和SDL的音视频播放器 如果您不理解本…...

键鼠自动化2.0树形结构讲解

介绍 在键鼠自动化2.0中使用Qtc实现了全自定义树形结构&#xff0c;实现任务的拖拽&#xff0c;复制粘贴&#xff0c;撤销重做&#xff0c;以及包括树形结构增加序号展示&#xff0c;以及增加搜索功能 实现 1.自定义节点 // 自定义节点类 class TreeNode : public QObject …...

2023年【金属非金属矿山安全检查(地下矿山)】考试报名及金属非金属矿山安全检查(地下矿山)最新解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 金属非金属矿山安全检查&#xff08;地下矿山&#xff09;考试报名参考答案及金属非金属矿山安全检查&#xff08;地下矿山&#xff09;考试试题解析是安全生产模拟考试一点通题库老师及金属非金属矿山安全检查&#…...

Java 12 及Tomcat 部署配置

使用的软件版本 1. Java12部署 和之前的Java版本不太一样&#xff0c;12版本不用配置JRE环境。 解压缩文件夹 root账户执行 tar -xzvf /home/software/jdk-12.0.2_linux-x64_bin.tar.gz创建java文件夹 root账户执行 cd /usr mkdir java移动Java文件到创建的文件夹下 root账…...

pandas教程:Date Ranges, Frequencies, and Shifting 日期范围,频度,和位移

文章目录 11.3 Date Ranges, Frequencies, and Shifting&#xff08;日期范围&#xff0c;频度&#xff0c;和位移&#xff09;1 Generating Date Ranges&#xff08;生成日期范围&#xff09;2 Frequencies and Date Offsets&#xff08;频度和日期偏移&#xff09;Week of mo…...

设计模式 - 概览

一、概念 分为三大类、23中具体设计模式。 类型原理具体模式创建型封装了具体类的信息&#xff0c;隐藏了类的实例化过程。 单例模式&#xff08;Singleton&#xff09; 工厂方法模式&#xff08;Factory Method&#xff09; 抽象工厂模式&#xff08;Abstract Factory&#xf…...

【Linux】Makefile

一、gcc 的缺点 gcc -o test a.c b.c我们具体分析&#xff1a;gcc -o test a.c b.c这条命令 它们要经过下面几个步骤&#xff1a; 1&#xff09;对于a.c&#xff1a;执行&#xff1a;预处理 编译 汇编 的过程&#xff0c;a.c >xxx.s >xxx.o 文件。2&#xff09;对于b.c…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...

游戏开发中常见的战斗数值英文缩写对照表

游戏开发中常见的战斗数值英文缩写对照表 基础属性&#xff08;Basic Attributes&#xff09; 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...

深入理解 C++ 左值右值、std::move 与函数重载中的参数传递

在 C 编程中&#xff0c;左值和右值的概念以及std::move的使用&#xff0c;常常让开发者感到困惑。特别是在函数重载场景下&#xff0c;如何合理利用这些特性来优化代码性能、确保语义正确&#xff0c;更是一个值得深入探讨的话题。 在开始之前&#xff0c;先提出几个问题&…...