Linux进程间通信之匿名管道
文章目录
- 为什么要有进程间通信
- pipe函数
- 共享管道原理
- 管道特点
- 管道的四种情况
- 管道的应用场景(进程池)
- ProcessPool.cc
- Task.hpp
为什么要有进程间通信
数据传输:一个进程需要将它的数据发送给另一个进程
资源共享:多个进程之间共享同样的资源。
通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程终止时要通知父进程)。
进程控制:有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变。
pipe函数
通过pipe函数实现两个进程间的通信
pipe()函数作用:生成两个文件描述符,分别为读端和写端
参数:
输出型参数pipefd[2],返回值pipefd[0]为读端,pipefd[1]为写端
返回值:
成功返回0,失败返回-1,并且设置错误码error
共享管道原理
通过fork函数实现父子之间的管道共享,同一进程fork出的多个进程之间都可以进行管道共享,因此只要是亲戚就可以。
管道共享更确切的说应该是缓冲区共享,我们先来理解一下fork函数,一个进程fork出了子进程,两个进程之间的代码是共享的,数据是独有的,当其中一个进程的数据发生改变时,就会发生写时拷贝。那么文件缓冲区呢?
父子之间的文件缓冲区也是共享的,因此父子之间就是借助这一点进行通信的。
我们以3号文件描述符为读端,4号文件描述符为写端为例,父进程向3号文件描述符写,子进程将数据写入到4号文件描述符。而4号文件描述符读到的就是父进程向3号文件描述符写的数据,这是怎么实现的呢?
1.父子进程是同步的
2.父子之间缓冲区是共享的。
因此当父亲向缓冲区写的时候,子进程就直接从缓冲区内读
你可能会有疑问,操作系统为什么要搞出管道,要是上面那样的话,和父进程直接向一个文件写,子进程从这个文件里读有什么区别?
管道通信是加载在内存上的,管道本身是一块缓冲区,这种方式更快,因为对于文件而言,它是在磁盘上加载的,如果单纯的对一个文件进行读写操作,肯定是要慢一些的
为什么说这种管道通信只能应用于亲戚之间呢?
因为只有亲戚之间,也就是同一个进程fork出的进程之间才会进行缓冲区共享
#include <iostream>
#include <unistd.h>
#include <error.h>
#include <stdio.h>
#include <cstring>
#include <sys/wait.h>#define N 2
#define NUM 1024using namespace std;void Writer(int wfd)
{string s = "i am a child abcdefg";char buf[NUM];buf[0] = 0;snprintf(buf, sizeof(buf), "%s", s.c_str());//把s.c_str()以字符串形式写入到buf里write(wfd, buf, sizeof(buf));//write(wfd, buf, sizeof(s.c_str()));// cout << "sizeof(s.c_str()):" << sizeof(s.c_str()) << endl;//s.c_str()返回值为char类型的指针// cout << "strlen(buf):" << strlen(buf) << endl;// cout << "strlen(s.c_str()):" << strlen(s.c_str()) << endl;
}void Reader(int rfd)
{char buf[NUM];ssize_t n = read(rfd, buf, sizeof(buf));//sizeof != strlenbuf[n] = 0;//0 == '\0' cout << buf << endl;//cout << n << endl;//printf("%s\n", buf);
}int main()
{int pipefd[N] = {0};//pipefd[2]int n = pipe(pipefd);//给pipe()函数传递一个数组,返回的数组下标0位置是读的文件描述符,下标1位置为写的文件描述符//cout << pipefd[0] << " " << pipefd[1] << endl;pid_t id = fork();if(id < 0){perror("fork error");return 1;}if(id == 0)//child --- 我们让子进程写,父进程读{close(pipefd[0]);//关闭子进程的读文件描述符Writer(pipefd[1]);close(pipefd[1]);//可关可不关,因为进程结束,它会自动关闭exit(0);}if(id > 0)//father----我么让父进程读,子进程写{close(pipefd[1]);//关闭父进程的写文件描述符Reader(pipefd[0]); }pid_t rid = waitpid(id, nullptr, 0);//return id -------- ridclose(pipefd[0]);//可关可不关,因为进程结束,它会自动关闭return 0;
}
管道特点
1.只能用于具有共同祖先的进程(具有亲缘关系的进程)之间进行通信;通常,一个管道由一个进程创建,然后该进程调用fork,此后父、子进程之间就可应用该管道。
2.管道提供流式服务
3.一般而言,进程退出,管道释放,所以管道的生命周期随进程
4.一般而言,内核会对管道操作进行同步与互斥管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道
管道的四种情况
1.读写端正常,管道如果为空,读端就要阻塞
2.读写端正常,管道如果被写满,写端就要阻塞
3.读端正常读,写端关闭,读端就会读到0,表明读到了文件pipe的结尾,不会被阻塞
4.写端正常写,读端关闭了。操作系统就要杀掉正在写入的进程。如何杀掉?通过信号杀掉,因为操作系统是不会做这种抵消,浪费等类似的工作,如果做了就是操作系统的bug
管道的应用场景(进程池)
我们知道当一个进程要执行一个事情时,一般它会创建一个子进程,并把这件事交给该进程让它去完成,现在我们有若干个任务要去让这个进程去完成,因此该进程就要去创建多个子进程,让他们分别去完成这些事,但是像这种每一次都要创建子进程的过程是很浪费时间的,操作系统是不会允许这种影响效率的事情发生的,那么我们要怎么提高效率呢?
进程池,就是让为该进程提前创建好若干个子进程,当有多个任务来的时候,就让这个父进程给子进程去派发不同的任务。我们以父进程为老板,子进程为打工人的场景来模拟,具体实现如下:
ProcessPool.cc
#include <unistd.h>
#include <string>
#include <iostream>
#include <vector>
#include <sys/wait.h>
#include <ctime>
#include "Task.hpp"using namespace std;#define processnum 10
#define N 2
#define NUM 1024
vector<task_t> tasks;//声明Task.hpp中的变量//先描述
class channel//管道
{
public:channel(int cmdfd, pid_t slaverid, const string& processname):_cmdfd(cmdfd),_slaverid(slaverid),_processname(processname){}public:int _cmdfd;//发送任务的文件描述符pid_t _slaverid;//该子进程的pidstring _processname;//子进程的名字
};void slaver()
{// char buf[NUM];// read(0, buf, sizeof(buf));int cmdnum = 0;//几号任务read(0, &cmdnum, sizeof(int));//cout << "读到了:" << cmdnum << endl;if(cmdnum > 0 && cmdnum <= tasks.size()){//cout << "cmdnum:" << cmdnum << endl;tasks[cmdnum - 1]();//为什么要加括号?//cout << "读到了:" << cmdnum << endl;}}void Menu()
{cout << "*******************************" << endl;cout << "********1.开机 2.打怪兽******" << endl;cout << "********3.回血 4.关机********" << endl;cout << "*******************************" << endl;cout << "请输入要执行的任务" << endl;
}void InitChannels(vector<channel>* channels)
{for(int i = 0; i < processnum; i++){int pipefd[N] = {0};pipe(pipefd);//cout << "pipefd[0]:" << pipefd[0] << " " << "pipefd[1]:" << pipefd[1] << endl;pid_t pid = fork();if(pid == 0){close(pipefd[1]);dup2(pipefd[0], 0);slaver();//slaver(pipefd[0]);//close(pipefd[0]);//子进程读的文件描述符可以不用关exit(0);}//fatherclose(pipefd[0]);//write(pipefd[1], "abcd", sizeof("abcd"));//Writer();string name = "process:" + to_string(i);channels->push_back(channel(pipefd[1], getpid(), name));//close(pipefd[1]);//waitpid(getpid(), nullptr, 0);}
}void Print(vector<channel> channels)
{int i = 0;for(auto& e : channels){cout << e._cmdfd << " " << e._processname << " " << e._slaverid << endl;//cout << "xxxxxxxxxxxxxxxxxxx" << i << "xxxxxxxxxxxxxxxxxxxxx" << endl;i++;}
}void ctrlSlaver(vector<channel> channels)
{while(1){//1.选择任务Menu();int select = 0; cin >> select;//2.选择进程srand(time(nullptr));int processpos = rand() % channels.size();//进程vector中对应的下标位置//3.发送任务write(channels[processpos]._cmdfd, &select, sizeof(int));//cout << channels[processpos]._cmdfd << endl;sleep(1);}
}void QuitProcess(const std::vector<channel> &channels)
{for(const auto &c : channels) close(c._cmdfd);// sleep(5);for(const auto &c : channels) waitpid(c._slaverid, nullptr, 0);// sleep(5);
}int main()
{LoadTask(&tasks);vector<channel> channels;//1.初始化channelsInitChannels(&channels);//Print(channels);//2.控制子进程ctrlSlaver(channels);QuitProcess(channels);return 0;
}
Task.hpp
#pragma once#include <iostream>
#include <vector>using namespace std;typedef void (*task_t)();//task_t先和*结合,所以task_t是一个指向参数为空,返回值为void的函数指针void task1()
{cout << "开机" << endl;
}void task2()
{cout << "打怪兽" << endl;
}void task3()
{cout << "回血" << endl;
}void task4()
{cout << "关机" << endl;
}void LoadTask(vector<task_t> *tasks)
{tasks->push_back(task1);tasks->push_back(task2);tasks->push_back(task3);tasks->push_back(task4);
}
相关文章:

Linux进程间通信之匿名管道
文章目录 为什么要有进程间通信pipe函数共享管道原理管道特点管道的四种情况 管道的应用场景(进程池)ProcessPool.ccTask.hpp 为什么要有进程间通信 数据传输:一个进程需要将它的数据发送给另一个进程 资源共享:多个进程之间共享…...
【PTA题目】6-19 使用函数输出指定范围内的Fibonacci数 分数 20
6-19 使用函数输出指定范围内的Fibonacci数 分数 20 全屏浏览题目 切换布局 作者 C课程组 单位 浙江大学 本题要求实现一个计算Fibonacci数的简单函数,并利用其实现另一个函数,输出两正整数m和n(0<m≤n≤10000)之间的所有F…...

运行ps显示msvcp140.dll丢失怎么恢复?msvcp140.dll快速解决的4个不同方法
msvcp140.dll无法继续执行代码的主要原因有以下几点 系统缺失:msvcp140.dll是Visual Studio 2015编译的程序默认的库文件,如果系统中没有这个库文件,那么在运行相关程序时就会出现找不到msvcp140.dll的错误提示。 文件损坏:如果…...

Java多线程(3)
Java多线程(3) 深入剖析Java线程的生命周期,探秘JVM的线程状态! 线程的生命周期 Java 线程的生命周期主要包括五个阶段:新建、就绪、运行、阻塞和销毁。 **新建(New):**线程对象通过 new 关键字创建&…...
Java线程周期
Java线程的生命周期包含以下状态: 新建(New):当一个线程被创建但还没有被启动时,它的状态是新建。就绪(Runnable):当线程已经被启动并且没有任何阻止它立即运行的条件时,…...

map与set的封装
目录 红黑树的结点 与 红黑树的迭代器 红黑树的实现: 迭代器: 编辑 红黑树的查找: 红黑树的插入: 编辑 检查红色结点:编辑红黑树的左旋 编辑红黑树的右旋 编辑红黑树的双旋 Map的封装 编辑set的…...

mac无法向移动硬盘拷贝文件怎么解决?不能读取移动硬盘文件怎么解决
有时候我们在使用mac的时候,会遇到一些问题,比如无法向移动硬盘拷贝文件或者不能读取移动硬盘文件。这些问题会给我们的工作和生活带来不便,所以我们需要找到原因和解决办法。本文将为你介绍mac无法向移动硬盘拷贝文件怎么回事,以…...

基于Netty实现的简单聊天服务组件
目录 基于Netty实现的简单聊天服务组件效果展示技术选型:功能分析聊天服务基础设施配置(基于Netty)定义组件基础的配置(ChatProperties)定义聊天服务类(ChatServer)定义聊天服务配置初始化类&am…...

视频封面:从视频中提取封面,轻松制作吸引人的视频
在当今的数字时代,视频已成为人们获取信息、娱乐和交流的重要方式。一个吸引人的视频封面往往能抓住眼球,提高点击率和观看率。今天将介绍如何从视频中提取封面,轻松制作吸引人的视频封面。 一、准备素材选择合适的视频片段 首先࿰…...

CICD 持续集成与持续交付——gitlab
部署 虚拟机最小需求:4G内存 4核cpu 下载:https://mirrors.tuna.tsinghua.edu.cn/gitlab-ce/yum/el7/ 安装依赖性 [rootcicd1 ~]# yum install -y curl policycoreutils-python openssh-server perl[rootcicd1 ~]# yum install -y gitlab-ce-15.9.3-ce.0…...
Linux - 驱动开发 - RNG框架
说明 公司SOC上有一个新思的真随机数(TRNG)模块,Linux平台上需要提供接口给外部使用。早期方式是提供一个独立的TRNG驱动,实现比较简单的,但是使用方式不open,为了加入Linux生态环境,对接linux…...

qsort使用举例和qsort函数的模拟实现
qsort使用举例 qsort是C语言中的一个标准库函数,用于对数组或者其他数据结构中的元素进行排序。它的原型如下: void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *)); 我们可以去官网搜来看一看:…...

AttributeError: module ‘gradio‘ has no attribute ‘ClearButton‘解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

Kafka 集群如何实现数据同步?
哈喽大家好,我是咸鱼 最近这段时间比较忙,将近一周没更新文章,再不更新我那为数不多的粉丝量就要库库往下掉了 T﹏T 刚好最近在学 Kafka,于是决定写篇跟 Kafka 相关的文章(文中有不对的地方欢迎大家指出)…...

一本了解生成式人工智能
上周,发了一篇关于大语言模型图数据库技术相结合的文章,引起了很多朋友的兴趣。当然了,这项技术本身就让俺们很兴奋,比如我就是从事图研发的,当然会非常关注它在图领域的应用与相互促就啦。 纵观人类文明历史ÿ…...
git 相关指令总结(持续更新中......)
文章目录 一、git clone 相关指令1.1 clone 指定分支的代码 一、git clone 相关指令 1.1 clone 指定分支的代码 git clone -b 分支名 仓库地址...

windows 安装 Oracle Database 19c
目录 什么是 Oracle 数据库 下载 Oracle 数据库 解压文件 运行安装程序 测试连接 什么是 Oracle 数据库 Oracle数据库是由美国Oracle Corporation(甲骨文公司)开发和提供的一种关系型数据库管理系统,它是一种强大的关系型数据库管理系统…...

【数据结构】图的存储结构(邻接矩阵)
一.邻接矩阵 1.图的特点 任何两个顶点之间都可能存在边,无法通过存储位置表示这种任意的逻辑关系。 图无法采用顺序存储结构。 2.如何存储图? 将顶点与边分开存储。 3.邻接矩阵(数组表示法) 基本思想: 用一个一维数…...
kubernetes--Pod控制器详解
目录 一、Pod控制器及其功用: 二、pod控制器的多种类型: 1、ReplicaSet: 1.1 ReplicaSet主要三个组件组成: 2、Deployment: 3、DaemonSet: 4、StatefulSet: 5、Job: 6、Cronjob: …...

九、Linux用户管理
1.基本介绍 Linux系统是一个多用户多任务的操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,让后以这个账号的身份进入系统 2.添加用户 基本语法 useradd 用户名 应用案例 案例1:添加一个用户 m…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...