当前位置: 首页 > news >正文

Linux进程间通信之匿名管道

文章目录

  • 为什么要有进程间通信
  • pipe函数
  • 共享管道原理
  • 管道特点
    • 管道的四种情况
  • 管道的应用场景(进程池)
    • ProcessPool.cc
    • Task.hpp

为什么要有进程间通信

数据传输:一个进程需要将它的数据发送给另一个进程
资源共享:多个进程之间共享同样的资源。
通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程终止时要通知父进程)。
进程控制:有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变。

pipe函数

通过pipe函数实现两个进程间的通信
在这里插入图片描述
pipe()函数作用:生成两个文件描述符,分别为读端和写端
参数:
在这里插入图片描述

输出型参数pipefd[2],返回值pipefd[0]为读端,pipefd[1]为写端
返回值:端
成功返回0,失败返回-1,并且设置错误码error
在这里插入图片描述

共享管道原理

通过fork函数实现父子之间的管道共享,同一进程fork出的多个进程之间都可以进行管道共享,因此只要是亲戚就可以。
管道共享更确切的说应该是缓冲区共享,我们先来理解一下fork函数,一个进程fork出了子进程,两个进程之间的代码是共享的,数据是独有的,当其中一个进程的数据发生改变时,就会发生写时拷贝。那么文件缓冲区呢?
父子之间的文件缓冲区也是共享的,因此父子之间就是借助这一点进行通信的。
我们以3号文件描述符为读端,4号文件描述符为写端为例,父进程向3号文件描述符写,子进程将数据写入到4号文件描述符。而4号文件描述符读到的就是父进程向3号文件描述符写的数据,这是怎么实现的呢?
1.父子进程是同步的
2.父子之间缓冲区是共享的。
因此当父亲向缓冲区写的时候,子进程就直接从缓冲区内读
在这里插入图片描述
你可能会有疑问,操作系统为什么要搞出管道,要是上面那样的话,和父进程直接向一个文件写,子进程从这个文件里读有什么区别?
管道通信是加载在内存上的,管道本身是一块缓冲区,这种方式更快,因为对于文件而言,它是在磁盘上加载的,如果单纯的对一个文件进行读写操作,肯定是要慢一些的
为什么说这种管道通信只能应用于亲戚之间呢?
因为只有亲戚之间,也就是同一个进程fork出的进程之间才会进行缓冲区共享

#include <iostream>
#include <unistd.h>
#include <error.h>
#include <stdio.h>
#include <cstring>
#include <sys/wait.h>#define N 2
#define NUM 1024using namespace std;void Writer(int wfd)
{string s = "i am a child abcdefg";char buf[NUM];buf[0] = 0;snprintf(buf, sizeof(buf), "%s", s.c_str());//把s.c_str()以字符串形式写入到buf里write(wfd, buf, sizeof(buf));//write(wfd, buf, sizeof(s.c_str()));// cout << "sizeof(s.c_str()):" << sizeof(s.c_str()) << endl;//s.c_str()返回值为char类型的指针// cout << "strlen(buf):" << strlen(buf) << endl;// cout << "strlen(s.c_str()):" << strlen(s.c_str()) << endl;
}void Reader(int rfd)
{char buf[NUM];ssize_t n = read(rfd, buf, sizeof(buf));//sizeof != strlenbuf[n] = 0;//0 == '\0' cout << buf << endl;//cout << n << endl;//printf("%s\n", buf);
}int main()
{int pipefd[N] = {0};//pipefd[2]int n = pipe(pipefd);//给pipe()函数传递一个数组,返回的数组下标0位置是读的文件描述符,下标1位置为写的文件描述符//cout << pipefd[0] << " " << pipefd[1] << endl;pid_t id = fork();if(id < 0){perror("fork error");return 1;}if(id == 0)//child --- 我们让子进程写,父进程读{close(pipefd[0]);//关闭子进程的读文件描述符Writer(pipefd[1]);close(pipefd[1]);//可关可不关,因为进程结束,它会自动关闭exit(0);}if(id > 0)//father----我么让父进程读,子进程写{close(pipefd[1]);//关闭父进程的写文件描述符Reader(pipefd[0]);   }pid_t rid = waitpid(id, nullptr, 0);//return id -------- ridclose(pipefd[0]);//可关可不关,因为进程结束,它会自动关闭return 0;
}

管道特点

1.只能用于具有共同祖先的进程(具有亲缘关系的进程)之间进行通信;通常,一个管道由一个进程创建,然后该进程调用fork,此后父、子进程之间就可应用该管道。
2.管道提供流式服务
3.一般而言,进程退出,管道释放,所以管道的生命周期随进程
4.一般而言,内核会对管道操作进行同步与互斥管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道
在这里插入图片描述

管道的四种情况

1.读写端正常,管道如果为空,读端就要阻塞
2.读写端正常,管道如果被写满,写端就要阻塞
3.读端正常读,写端关闭,读端就会读到0,表明读到了文件pipe的结尾,不会被阻塞
4.写端正常写,读端关闭了。操作系统就要杀掉正在写入的进程。如何杀掉?通过信号杀掉,因为操作系统是不会做这种抵消,浪费等类似的工作,如果做了就是操作系统的bug

管道的应用场景(进程池)

我们知道当一个进程要执行一个事情时,一般它会创建一个子进程,并把这件事交给该进程让它去完成,现在我们有若干个任务要去让这个进程去完成,因此该进程就要去创建多个子进程,让他们分别去完成这些事,但是像这种每一次都要创建子进程的过程是很浪费时间的,操作系统是不会允许这种影响效率的事情发生的,那么我们要怎么提高效率呢?
进程池,就是让为该进程提前创建好若干个子进程,当有多个任务来的时候,就让这个父进程给子进程去派发不同的任务。我们以父进程为老板,子进程为打工人的场景来模拟,具体实现如下:

ProcessPool.cc

#include <unistd.h>
#include <string>
#include <iostream>
#include <vector>
#include <sys/wait.h>
#include <ctime>
#include "Task.hpp"using namespace std;#define processnum 10
#define N 2
#define NUM 1024
vector<task_t> tasks;//声明Task.hpp中的变量//先描述
class channel//管道
{
public:channel(int cmdfd, pid_t slaverid, const string& processname):_cmdfd(cmdfd),_slaverid(slaverid),_processname(processname){}public:int _cmdfd;//发送任务的文件描述符pid_t _slaverid;//该子进程的pidstring _processname;//子进程的名字
};void slaver()
{// char buf[NUM];// read(0, buf, sizeof(buf));int cmdnum = 0;//几号任务read(0, &cmdnum, sizeof(int));//cout << "读到了:" << cmdnum << endl;if(cmdnum > 0 && cmdnum <= tasks.size()){//cout << "cmdnum:" << cmdnum << endl;tasks[cmdnum - 1]();//为什么要加括号?//cout << "读到了:" << cmdnum << endl;}}void Menu()
{cout << "*******************************" << endl;cout << "********1.开机    2.打怪兽******" << endl;cout << "********3.回血    4.关机********" << endl;cout << "*******************************" << endl;cout << "请输入要执行的任务" << endl;
}void InitChannels(vector<channel>* channels)
{for(int i = 0; i < processnum; i++){int pipefd[N] = {0};pipe(pipefd);//cout << "pipefd[0]:" << pipefd[0] <<  "   " << "pipefd[1]:" << pipefd[1] << endl;pid_t pid = fork();if(pid == 0){close(pipefd[1]);dup2(pipefd[0], 0);slaver();//slaver(pipefd[0]);//close(pipefd[0]);//子进程读的文件描述符可以不用关exit(0);}//fatherclose(pipefd[0]);//write(pipefd[1], "abcd", sizeof("abcd"));//Writer();string name = "process:" + to_string(i);channels->push_back(channel(pipefd[1], getpid(), name));//close(pipefd[1]);//waitpid(getpid(), nullptr, 0);}   
}void Print(vector<channel> channels)
{int i = 0;for(auto& e : channels){cout << e._cmdfd << " " << e._processname << " " << e._slaverid << endl;//cout << "xxxxxxxxxxxxxxxxxxx" << i << "xxxxxxxxxxxxxxxxxxxxx" << endl;i++;}
}void ctrlSlaver(vector<channel> channels)
{while(1){//1.选择任务Menu();int select = 0; cin >> select;//2.选择进程srand(time(nullptr));int processpos = rand() % channels.size();//进程vector中对应的下标位置//3.发送任务write(channels[processpos]._cmdfd, &select, sizeof(int));//cout << channels[processpos]._cmdfd << endl;sleep(1);}
}void QuitProcess(const std::vector<channel> &channels)
{for(const auto &c : channels) close(c._cmdfd);// sleep(5);for(const auto &c : channels) waitpid(c._slaverid, nullptr, 0);// sleep(5);
}int main()
{LoadTask(&tasks);vector<channel> channels;//1.初始化channelsInitChannels(&channels);//Print(channels);//2.控制子进程ctrlSlaver(channels);QuitProcess(channels);return 0;
}

Task.hpp

#pragma once#include <iostream>
#include <vector>using namespace std;typedef void (*task_t)();//task_t先和*结合,所以task_t是一个指向参数为空,返回值为void的函数指针void task1()
{cout << "开机" << endl;
}void task2()
{cout << "打怪兽" << endl;
}void task3()
{cout << "回血" << endl;
}void task4()
{cout << "关机" << endl;
}void LoadTask(vector<task_t> *tasks)
{tasks->push_back(task1);tasks->push_back(task2);tasks->push_back(task3);tasks->push_back(task4);
}

相关文章:

Linux进程间通信之匿名管道

文章目录 为什么要有进程间通信pipe函数共享管道原理管道特点管道的四种情况 管道的应用场景&#xff08;进程池&#xff09;ProcessPool.ccTask.hpp 为什么要有进程间通信 数据传输&#xff1a;一个进程需要将它的数据发送给另一个进程 资源共享&#xff1a;多个进程之间共享…...

【PTA题目】6-19 使用函数输出指定范围内的Fibonacci数 分数 20

6-19 使用函数输出指定范围内的Fibonacci数 分数 20 全屏浏览题目 切换布局 作者 C课程组 单位 浙江大学 本题要求实现一个计算Fibonacci数的简单函数&#xff0c;并利用其实现另一个函数&#xff0c;输出两正整数m和n&#xff08;0<m≤n≤10000&#xff09;之间的所有F…...

运行ps显示msvcp140.dll丢失怎么恢复?msvcp140.dll快速解决的4个不同方法

msvcp140.dll无法继续执行代码的主要原因有以下几点 系统缺失&#xff1a;msvcp140.dll是Visual Studio 2015编译的程序默认的库文件&#xff0c;如果系统中没有这个库文件&#xff0c;那么在运行相关程序时就会出现找不到msvcp140.dll的错误提示。 文件损坏&#xff1a;如果…...

Java多线程(3)

Java多线程(3) 深入剖析Java线程的生命周期&#xff0c;探秘JVM的线程状态&#xff01; 线程的生命周期 Java 线程的生命周期主要包括五个阶段&#xff1a;新建、就绪、运行、阻塞和销毁。 **新建&#xff08;New&#xff09;&#xff1a;**线程对象通过 new 关键字创建&…...

Java线程周期

Java线程的生命周期包含以下状态&#xff1a; 新建&#xff08;New&#xff09;&#xff1a;当一个线程被创建但还没有被启动时&#xff0c;它的状态是新建。就绪&#xff08;Runnable&#xff09;&#xff1a;当线程已经被启动并且没有任何阻止它立即运行的条件时&#xff0c;…...

map与set的封装

目录 红黑树的结点 与 红黑树的迭代器 红黑树的实现&#xff1a; 迭代器&#xff1a; ​编辑 红黑树的查找&#xff1a; 红黑树的插入&#xff1a; ​编辑 检查红色结点&#xff1a;​编辑红黑树的左旋 ​编辑红黑树的右旋 ​编辑红黑树的双旋 Map的封装 ​编辑set的…...

mac无法向移动硬盘拷贝文件怎么解决?不能读取移动硬盘文件怎么解决

有时候我们在使用mac的时候&#xff0c;会遇到一些问题&#xff0c;比如无法向移动硬盘拷贝文件或者不能读取移动硬盘文件。这些问题会给我们的工作和生活带来不便&#xff0c;所以我们需要找到原因和解决办法。本文将为你介绍mac无法向移动硬盘拷贝文件怎么回事&#xff0c;以…...

基于Netty实现的简单聊天服务组件

目录 基于Netty实现的简单聊天服务组件效果展示技术选型&#xff1a;功能分析聊天服务基础设施配置&#xff08;基于Netty&#xff09;定义组件基础的配置&#xff08;ChatProperties&#xff09;定义聊天服务类&#xff08;ChatServer&#xff09;定义聊天服务配置初始化类&am…...

视频封面:从视频中提取封面,轻松制作吸引人的视频

在当今的数字时代&#xff0c;视频已成为人们获取信息、娱乐和交流的重要方式。一个吸引人的视频封面往往能抓住眼球&#xff0c;提高点击率和观看率。今天将介绍如何从视频中提取封面&#xff0c;轻松制作吸引人的视频封面。 一、准备素材选择合适的视频片段 首先&#xff0…...

CICD 持续集成与持续交付——gitlab

部署 虚拟机最小需求&#xff1a;4G内存 4核cpu 下载&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/gitlab-ce/yum/el7/ 安装依赖性 [rootcicd1 ~]# yum install -y curl policycoreutils-python openssh-server perl[rootcicd1 ~]# yum install -y gitlab-ce-15.9.3-ce.0…...

Linux - 驱动开发 - RNG框架

说明 公司SOC上有一个新思的真随机数&#xff08;TRNG&#xff09;模块&#xff0c;Linux平台上需要提供接口给外部使用。早期方式是提供一个独立的TRNG驱动&#xff0c;实现比较简单的&#xff0c;但是使用方式不open&#xff0c;为了加入Linux生态环境&#xff0c;对接linux…...

qsort使用举例和qsort函数的模拟实现

qsort使用举例 qsort是C语言中的一个标准库函数&#xff0c;用于对数组或者其他数据结构中的元素进行排序。它的原型如下&#xff1a; void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *)); 我们可以去官网搜来看一看&#xff1a;…...

AttributeError: module ‘gradio‘ has no attribute ‘ClearButton‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

Kafka 集群如何实现数据同步?

哈喽大家好&#xff0c;我是咸鱼 最近这段时间比较忙&#xff0c;将近一周没更新文章&#xff0c;再不更新我那为数不多的粉丝量就要库库往下掉了 T﹏T 刚好最近在学 Kafka&#xff0c;于是决定写篇跟 Kafka 相关的文章&#xff08;文中有不对的地方欢迎大家指出&#xff09;…...

一本了解生成式人工智能

上周&#xff0c;发了一篇关于大语言模型图数据库技术相结合的文章&#xff0c;引起了很多朋友的兴趣。当然了&#xff0c;这项技术本身就让俺们很兴奋&#xff0c;比如我就是从事图研发的&#xff0c;当然会非常关注它在图领域的应用与相互促就啦。 纵观人类文明历史&#xff…...

git 相关指令总结(持续更新中......)

文章目录 一、git clone 相关指令1.1 clone 指定分支的代码 一、git clone 相关指令 1.1 clone 指定分支的代码 git clone -b 分支名 仓库地址...

windows 安装 Oracle Database 19c

目录 什么是 Oracle 数据库 下载 Oracle 数据库 解压文件 运行安装程序 测试连接 什么是 Oracle 数据库 Oracle数据库是由美国Oracle Corporation&#xff08;甲骨文公司&#xff09;开发和提供的一种关系型数据库管理系统&#xff0c;它是一种强大的关系型数据库管理系统…...

【数据结构】图的存储结构(邻接矩阵)

一.邻接矩阵 1.图的特点 任何两个顶点之间都可能存在边&#xff0c;无法通过存储位置表示这种任意的逻辑关系。 图无法采用顺序存储结构。 2.如何存储图&#xff1f; 将顶点与边分开存储。 3.邻接矩阵&#xff08;数组表示法&#xff09; 基本思想&#xff1a; 用一个一维数…...

kubernetes--Pod控制器详解

目录 一、Pod控制器及其功用&#xff1a; 二、pod控制器的多种类型&#xff1a; 1、ReplicaSet: 1.1 ReplicaSet主要三个组件组成&#xff1a; 2、Deployment&#xff1a; 3、DaemonSet&#xff1a; 4、StatefulSet&#xff1a; 5、Job&#xff1a; 6、Cronjob&#xff1a; …...

九、Linux用户管理

1.基本介绍 Linux系统是一个多用户多任务的操作系统&#xff0c;任何一个要使用系统资源的用户&#xff0c;都必须首先向系统管理员申请一个账号&#xff0c;让后以这个账号的身份进入系统 2.添加用户 基本语法 useradd 用户名 应用案例 案例1&#xff1a;添加一个用户 m…...

springboot项目中没有识别到yml文件解决办法

springboot项目中没有识别到yml文件解决办法 ![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传] 1、这个意思就是没有配置数据库的数据源路径。所以需要配置数据源&#xff0c;比如mysql的驱动和路径。检查是否在properties或者yml文件中是否已经配置好。…...

[管理与领导-125]:一个IT人的思考:职场中、人际交往中,不要为他人的不良行为和言语买单,不要让自己的情绪被外界影响或掌控。

目录 前言&#xff1a; 一、是什么What 二、为什么Why? 三、怎么办How? 前言&#xff1a; 无论是职场中&#xff0c;还是人际交往中&#xff0c;我们的难免受到他人的影响&#xff0c;有积极正面的情绪影响&#xff0c;有消极负面的情绪影响。为什么我们自身的情绪会受到…...

【FPGA】IP核

一.IP核是什么 IP&#xff1a;知识产权&#xff0c;半导体产业中&#xff1a;在ASIC和FPGA中定义为预先设计好的电路功能模块。 在使用的时候其他用户可以直接调用IP核心。 二. 为什么要是有IP核 提高开发效率&#xff0c;减小设计和调试的时间&#xff0c;加速开发进程&am…...

吾爱破解置顶的“太极”,太好用了吧!

日常工作和娱乐&#xff0c;都需要用到不同类型的软件&#xff0c;哪怕软件体积不大&#xff0c;也必须安装&#xff0c;否则到用时找不到就非常麻烦了。 其实&#xff0c;很多软件不一定一样不剩地全部安装一遍&#xff0c;一方面原因是用的不多&#xff0c;另一方面多少有点…...

Postman接收列表、数组参数@RequestParam List<String> ids

示例如下: 接口定义如下: GetMapping(value "/queryNewMoviePath")public List<Map<String, Object>> queryNewMoviePath(RequestParam List<String> ids ) {return service.queryNewMoviePath(ids);}postman中测试如下&#xff1a; http://loc…...

qemu + busybox + 内核实验环境搭建(2023-11)

主要是参考网上的例子&#xff0c;网上的一些例子可能用的busybox 老旧&#xff0c;编译各种问题&#xff0c;以及rootfs hda的方式或者ramfs的方式。可能有些概念还是不清楚&#xff0c;以下是最终完成测试成功的案例。 下载kernel https://cdn.kernel.org/pub/linux/kernel…...

JavaScript管理HTMLDOM元素(增删改查)

本文主要讲解JavaScript如何通过管理HTML上的DOM元素&#xff0c;其中包括如何查询、创建、修改以及删除具体功能和源码讲解。 增加 首先我们准备一个HTML框架和简单CSS样式&#xff0c;我对其中元素作用和关系进行一个简单说明。 <!DOCTYPE html> <html><he…...

RE2文本匹配实战

引言 今天我们来实现RE2进行文本匹配&#xff0c;模型实现参考了官方代码https://github.com/alibaba-edu/simple-effective-text-matching-pytorch。 模型实现 RE2模型架构如上图所示。它的输入是两个文本片段&#xff0c;所有组件参数除了预测层和对齐层外都是共享的。上图…...

实在智能携手中国电信翼支付,全球首款Agent智能体亮相2023数字科技生态大会

11月10日-13日&#xff0c;中国电信与广东省人民政府联合主办的“2023数字科技生态大会”在广州隆重举行。本届大会以“数字科技焕新启航”为主题&#xff0c;邀请众多生态合作伙伴全方位展示数字科技新成果&#xff0c;包括数字新消费、产业数字化、智能电子、人工智能大模型等…...

安全框架springSecurity+Jwt+Vue-1(vue环境搭建、动态路由、动态标签页)

一、安装vue环境&#xff0c;并新建Vue项目 ①&#xff1a;安装node.js 官网(https://nodejs.org/zh-cn/) 2.安装完成之后检查下版本信息&#xff1a; ②&#xff1a;创建vue项目 1.接下来&#xff0c;我们安装vue的环境 # 安装淘宝npm npm install -g cnpm --registryhttps:/…...