python-opencv 培训课程作业
python-opencv 培训课程作业
作业一:
第一步:读取 res 下面的 flower.jpg,读取彩图,并用 opencv 展示
第二步:彩图 -> 灰度图
第三步:反转图像:最大图像灰度值减去原图像,即可得到反转的图像
第四步:用 plt 对比展示原图、灰度图、反转图 plt.subplot()
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
#默认加载彩图
path=r'flower.jpg'# imread(path,way)
#way=0 灰度图。way=1 彩图
#默认彩图#cv2.COLOR_BGR2GRAY#cv2.COLOR_BGR2RGB
#cv2.COLOR_BGR2HSV,HSV-色调、饱和度、亮度def cv_show(name,img):cv2.imshow(name,img)#cv2.waitKey(0),接收0,表示窗口暂停cv2.waitKey(0)#销毁所有窗口cv2.destroyAllWindows()
# 第一步:读取 res 下面的 flower.jpg,读取彩图,并用 opencv 展示
img=cv2.imread(path)cv_show('flower',img)# 彩图 -> 灰度图
img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 反转图像:最大图像灰度值减去原图像,即可得到反转的图像max_gray_value=img_gray.max()
print(max_gray_value)covert_img=max_gray_value-img# 用 plt 对比展示原图、灰度图、反转图 plt.subplot()plt.subplot(131)
img = img[:,:, ::-1]
plt.imshow(img)plt.title('original')plt.subplot(132)
plt.imshow(img_gray,'gray')
plt.title('img_gray')
plt.subplot(133)
covert_img=covert_img[:,:, ::-1]
plt.imshow(covert_img)
plt.title('covert_img')plt.show()
作业二:
第一步:第一步:读取 res 下面的 girl.jpg,读取彩图,,并转换为rbg格式展示
第二步:灰度化处理,并展示
第三步:灰度图二值化处理,像素值大于50,设置为255,小于50,设置为0
第四步:伽马变换:通过幂运算来调整图像的对比度和亮度,每个像素值取 0.8 次幂,参考 math.pow(gamma[i][j], 0.8),并展示最终结果
第五步:对数变换:通过对每个像素点的灰度值进行对数计算,以增强图像中低灰度级的细节,增强图像的整体对比度,对每个像素求 3 * math.log(1 + log[i][j]),并展示最终结果
代码如下:
import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as npmpl.rcParams["font.sans-serif"] = ["SimHei"] # 指定默认字体 SimHei 黑体# 读入原始图像 res/girl.jpg,并用展示 rgb
path=r'girl.jpg'def cv_show(name,img):cv2.imshow(name,img)#cv2.waitKey(0),接收0,表示窗口暂停cv2.waitKey(0)#销毁所有窗口cv2.destroyAllWindows()
# 第一步:读取 res 下面的 girl.jpg,读取彩图,并转换为rbg格式展示
img=cv2.imread(path)img_rgb=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)cv_show('original',img)
cv_show('girl_rgb',img_rgb)
#cv_show('girl_rgb',img)
# 灰度化处理,并展示
img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)cv_show('girl_gray',img_gray)
# 二值化处理# gray是灰度图,像素值大于50,设置为255,小于50,设置为0ret,dst1=cv2.threshold(img_gray,50,255,cv2.THRESH_BINARY)
cv_show('girl_gray_binary',dst1)# 伽马变换:通过幂运算来调整图像的对比度和亮度,每个像素值取 0.8 次幂,参考 math.pow(gamma[i][j], 0.8),并展示最终结果
rows = img.shape[0] # rows、cols 行列数,rows 也就是高度
cols = img.shape[1]# 设定伽马值
gamma = 0.8# 对图像进行伽马变换
gamma_correction = np.power(img_gray / 255.0, gamma)
gamma_correction = (gamma_correction * 255).astype(np.uint8)
cv_show('girl_gamma_correctiony',gamma_correction)# 对数变换:通过对每个像素点的灰度值进行对数计算,以增强图像中低灰度级的细节,增强图像的整体对比度,对每个像素求 3 * math.log(1 + log[i][j]),并展示最终结果
for i in range(rows):for j in range(cols):img_gray[i][j]= 3 * math.log(1 + img_gray[i][j])# print(img_gray[i][j])cv_show('log_img',img_gray)






相关文章:
python-opencv 培训课程作业
python-opencv 培训课程作业 作业一: 第一步:读取 res 下面的 flower.jpg,读取彩图,并用 opencv 展示 第二步:彩图 -> 灰度图 第三步:反转图像:最大图像灰度值减去原图像,即可得…...
【Go入门】并发
【Go入门】并发 有人把Go比作21世纪的C语言,第一是因为Go语言设计简单,第二,21世纪最重要的就是并行程序设计,而Go从语言层面就支持了并行。 goroutine goroutine是Go并行设计的核心。goroutine说到底其实就是协程,…...
Java虚拟机运行时数据区结构详解
Java虚拟机运行时数据区结构如图所示 程序计数器 程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。 多线程切换时,为了能恢复到正确的执行位置,每条线程…...
华为OD机试 - 转盘寿司(Java JS Python C)
目录 题目描述 输入描述 输出描述 用例 题目解析 JS算法源码 Java算法源码...
【ATTCK】MITRE Caldera-emu插件
CALDERA是一个由python语言编写的红蓝对抗工具(攻击模拟工具)。它是MITRE公司发起的一个研究项目,该工具的攻击流程是建立在ATT&CK攻击行为模型和知识库之上的,能够较真实地APT攻击行为模式。 通过CALDERA工具,安全…...
23111709[含文档+PPT+源码等]计算机毕业设计基于Spring Boot智能无人仓库管理-进销存储
文章目录 **软件开发环境及开发工具:****功能介绍:****论文截图:****数据库:****实现:****代码片段:** 编程技术交流、源码分享、模板分享、网课教程 🐧裙:776871563 软件开发环境及…...
SDUT OJ《算法分析与设计》贪心算法
A - 汽车加油问题 Description 一辆汽车加满油后可行驶n公里。旅途中有若干个加油站。设计一个有效算法,指出应在哪些加油站停靠加油,使沿途加油次数最少。并证明算法能产生一个最优解。 对于给定的n和k个加油站位置,计算最少加油次数。 I…...
金融业务系统: Service Mesh用于安全微服务集成
随着云计算的不断演进,微服务架构变得日益复杂。为了有效地管理这种复杂性,人们开始采用服务网格。在本文中,我们将解释什么是Service Mesh,为什么它对现代云架构至关重要,以及它是如何解决开发人员今天面临的一些最紧…...
Linux下快速确定目标服务器支持哪些协议和密码套件
实现原理是利用TLS协议的特点和握手过程来进行测试和解析响应来确定目标服务器支持哪些TLS协议和密码套件。 在TLS握手过程中,客户端和服务器会协商并使用相同的TLS协议版本和密码套件来进行通信。通过发送特定的握手请求并分析响应,可以确定目标服务器…...
LeetCode100122. Separate Black and White Balls
文章目录 一、题目二、题解 一、题目 There are n balls on a table, each ball has a color black or white. You are given a 0-indexed binary string s of length n, where 1 and 0 represent black and white balls, respectively. In each step, you can choose two a…...
系列二十六、idea安装javap -c
一、概述 javap -c是一个能够将.java文件反编译为.class文件的指令,例如我在idea中编写了一个Car.java文件,我想看看这个类被编译后长什么样的,就可以使用该指令进行查看。 二、配置 2.1、 Java Bytecode Decompiler File>Settings>Pl…...
nginx 如何根据IP做限流,以及 nginx 直接返回 json 格式数据
Nginx 限流配置 Nginx是如何限流的。随着业务的扩散,系统并发越来越高时,有三样利器用来保护系统,分别是缓存、降级和限流。 随着业务的扩散,系统并发越来越高时,有三样利器用来保护系统,分别是缓存、降…...
C语言链式栈
stack.h typedef struct Node_s {int data;struct Node_s *pNext; } Node_t, *pNode_t;typedef struct Stack_s {pNode_t pHead;//栈顶指针,指向了链表的第一个结点int size;//栈的元素个数 } Stack_t, *pStack_t;void init(pStack_t pStack); void push(pStack_t …...
【Go入门】 Go的http包详解
【Go入门】 Go的http包详解 前面小节介绍了Go怎么样实现了Web工作模式的一个流程,这一小节,我们将详细地解剖一下http包,看它到底是怎样实现整个过程的。 Go的http有两个核心功能:Conn、ServeMux Conn的goroutine 与我们一般编…...
解决k8s node节点报错: Failed to watch *v1.Secret: unknown
现象: 这个现象是发生在k8s集群证书过期,重新续签证书以后。 记得master节点的/etc/kubernetes/kubelet.conf文件已经复制到node节点了。 但是为什么还是报这个错,然后运行证书检查命令看一下: 看样子是差/etc/kubernetes/pki/…...
日志维护库:loguru
在复杂的项目中,了解程序的运行状态变得至关重要。在这个过程中,日志记录(logging)成为我们追踪、调试和了解代码执行的不可或缺的工具。在python语言中常用logging日志库,但是logging日志库使用相对繁琐,在…...
【Go入门】 Go如何使得Web工作
【Go入门】 Go如何使得Web工作 前面小节介绍了如何通过Go搭建一个Web服务,我们可以看到简单应用一个net/http包就方便的搭建起来了。那么Go在底层到底是怎么做的呢?万变不离其宗,Go的Web服务工作也离不开我们第一小节介绍的Web工作方式。 w…...
汽车虚拟仿真视频数据理解--CLIP模型原理
CLIP模型原理 CLIP的全称是Contrastive Language-Image Pre-Training,中文是对比语言-图像预训练,是一个预训练模型,简称为CLIP。该模型是 OpenAI 在 2021 年发布的,最初用于匹配图像和文本的预训练神经网络模型,这个任…...
【Web】Ctfshow SSTI刷题记录1
目录 ①web361 362-无过滤 ②web363-过滤单双引号 ③web364-过滤单双引号和args ④web365-过滤中括号[]、单双引号、args ⑤web366-过滤单双引号、args、中括号[]、下划线 ⑦web367-过滤单双引号、args、中括号[]、下划线、os ⑧web368-过滤单双引号、args、中括号[]、下…...
【广州华锐互动】VR可视化政务服务为公众提供更直观、形象的政策解读
虚拟现实(VR)技术正在逐渐应用于政务服务领域,为公众提供更加便捷、高效和个性化的服务体验。通过VR眼镜、手机等设备,公众可以在虚拟环境中参观政务服务中心,并根据自己的需求选择不同的办事窗口或事项进行咨询和办理…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
Vue 3 + WebSocket 实战:公司通知实时推送功能详解
📢 Vue 3 WebSocket 实战:公司通知实时推送功能详解 📌 收藏 点赞 关注,项目中要用到推送功能时就不怕找不到了! 实时通知是企业系统中常见的功能,比如:管理员发布通知后,所有用户…...
相关类相关的可视化图像总结
目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...
