Pytorch D2L Subplots方法对画图、图片处理
问题代码
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""绘制图像列表"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
# 图片张量
ax.imshow(img.numpy())
else:
# PIL图片
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
d2l.plt.subplots返回值
plt.subplots是matplotlib库中的一个函数,用于创建一个新的Figure对象,并在其中创建一个或多个子图(subplot)。
它的基本用法是:
fig, ax = plt.subplots(nrows=1, ncols=1, **kwargs)
其中,nrows和ncols分别指定了子图的行数和列数。如果只想创建一个子图,可以省略其中一个参数。
返回值fig是Figure对象,ax则是一个或多个子图的Axes对象(如果只创建了一个子图,则返回一个单独的Axes对象;如果创建了多个子图,则返回一个Axes对象列表)。
kwargs是可选的关键字参数,用于设置Figure和子图的属性。例如,可以使用figsize参数设置Figure的大小,使用sharex和sharey参数来共享子图的x轴和y轴。
axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
解释:
d2l.plt.subplots创建了一个包含多个子图的网格(grid);
num_rows和num_cols分别指定了网格中子图的行数和列数;
figsize指定了整个图像的尺寸,即包含所有子图的画布大小。
返回值axes是一个由网格的子图对象组成的NumPy数组。
我们可以使用它来访问、控制和绘制每个子图。
举例说明:
axes是一个由子图对象组成的NumPy数组,它可以用来访问、控制和绘制每个子图。具体来说,axes是一个大小为(num_rows, num_cols)的NumPy数组,其中axes[i, j]表示第 i + 1 i+1 i+1行和第 j + 1 j+1 j+1列的子图对象。
例如,如果我们使用以下代码创建一个包含 2 2 2行 3 3 3列子图的网格:
import matplotlib.pyplot as pltimport d2lfigsize = (6, 4)num_rows, num_cols = 2, 3axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)那么`axes`将是一个大小为$(2, 3)$的NumPy数组,可以通过索引来访问每个子图对象。例如,我们可以在第$1$行第$2$列的子图中绘制一条直线:axes[0, 1].plot([0, 1], [0, 1])
或者我们可以在所有子图中添加一个标题:
for i in range(num_rows):for j in range(num_cols):axes[i, j].set_title(f'Subplot ({i+1}, {j+1})')
原链接
subplot()、subplots()
subplot()、subplots()在实际过程中,先创建了一个figure画窗,然后通过调用add_subplot()来向画窗中各个分块添加坐标区,其差别在于是分次添加(subplot())还是一次性添加(subplots())

3.plt.subplots()
语法格式:
matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False,
sharey=False, squeeze=True,subplot_kw=None, gridspec_kw=None, **fig_kw)
-nrows:默认为 1,设置图表的行数。
-ncols:默认为 1,设置图表的列数。
-sharex、sharey:设置 x、y 轴是否共享属性,默认为 false,可设置为 ‘none’、‘all’、‘row’ 或 ‘col’。 False 或 none 每个子图的 x 轴或 y 轴都是独立的,True 或 ‘all’:所有子图共享 x 轴或 y 轴,‘row’ 设置每个子图行共享一个 x 轴或 y 轴,‘col’:设置每个子图列共享一个 x 轴或 y 轴。
import matplotlib.pyplot as plt
import numpy as np# 创建一些测试数据
x = np.linspace(0,100, 4)
y = np.sin(x**2)# 创建一个画像和子图 -- 图1
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')# 创建两个子图 -- 图2
#如图figure2,四个子图中上两幅图并无x轴(与下子图共享),因为已设置sharex=True
#若改为sharey=True,可观察到四副子图中右两幅无y轴(即与左子图共享)
f, ([ax1, ax2],[ax3,ax4]) = plt.subplots(2, 2, sharex=True)
ax1.plot(x, y)
ax1.set_title('Sharing x axis')
ax2.scatter(x, y)
ax3.scatter(x, y)
ax4.scatter(x, y)# 创建四个子图 -- 图3
#通过对subplot_kw传入参数,生成关于极坐标系的子图
fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar"))
axs[0, 0].plot(x, y)
axs[1, 1].scatter(x, y)plt.show()

文章来源地址
python内置函数:zip()函数搭配enumerate函数使用,用在for循环中
简介enumerate()
enumerate()函数是Python的内置函数,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),可以利用enumerate函数同时获取对象的索引和值。
x=np.arange(0,100,10)
for i in enumerate(x):index = i[0]; xval = i[1]print(index,xval)
0 0
1 10
2 20
3 30
4 40
5 50
6 60
7 70
8 80
9 90
简介zip()
zip函数是Python的内置函数,它用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象(即对多个序列进行并行迭代)。如果各个迭代器元素个数不一致,zip()函数则在最短序列“用完”时就会停止。
sz = np.arange(1,100,10)
sx = np.arange(1,10,1)
for index, (szi, sxi) in enumerate(zip(sz, sx)):print(index,szi,sxi)
0 1 1
1 11 2
2 21 3
3 31 4
4 41 5
5 51 6
6 61 7
7 71 8
8 81 9
transforms.Compose(trans)
Compose()类会将transforms列表里面的transform操作进行遍历。实现的代码很简单:
## 这里对源码进行了部分截取。
def __call__(self, img):for t in self.transforms: img = t(img)return img
pytorch通过深度学习进行预处理图片,离不开transforms.Compose(),torchvision.datasets.ImageFolder(),torch.utils.data.DataLoader()的用法。
源自于文章
1.Transform.Compose()详解
导入相应的库
import torch
import torchvision
import matplotlib.pyplot as plt
from torch.utils import data
from torchvision import datasets,transforms
from PIL import Image
%matplotlib inline

class torchvision.transforms.Compose(transforms):# Composes several transforms together.# Parameters: transforms (list of Transform objects) – list of transforms to compose.Example # 可以看出Compose里面的参数实际上就是个列表,而这个列表里面的元素就是你想要执行的transform操作。
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),])
展示原始图片
pic = "./train/Chihuahua/n02085620_10074.jpg"img = plt.imread(pic)
plt.imshow(img)
定义图片预处理的对象。
traintransform = transforms.Compose([transforms.RandomRotation(20), # 随机旋转20°transforms.ColorJitter(brightness=0.1), #随机改变图像的亮度对比度和饱和度transforms.Resize([150,150]), # 转换为需要的尺寸transforms.ToTensor(), #convert a PIL image to tensor (H*W*C)])
img1 = Image.fromarray(img) #将numpy对象的img转换为PIL格式
img2 = traintransform(img1)# 图像预处理tensor
img3 = transforms.ToPILImage()(img2)#转换为PIL进行展示
plt.imshow(img3)
展示处理之后的图片,可以看出,图片旋转了20°,并且大小转换为(150,150)
附上——transforms中的函数如何使用?
# Resize:把给定的图片resize到given size
# Normalize:Normalized an tensor image with mean and standard deviation
# ToTensor:convert a PIL image to tensor (H*W*C) in range [0,255] to a torch.Tensor(C*H*W) in the range [0.0,1.0]
# ToPILImage: convert a tensor to PIL image
# Scale:目前已经不用了,推荐用Resize
# CenterCrop:在图片的中间区域进行裁剪
# RandomCrop:在一个随机的位置进行裁剪
# RandomHorizontalFlip:以0.5的概率水平翻转给定的PIL图像
# RandomVerticalFlip:以0.5的概率竖直翻转给定的PIL图像
# RandomResizedCrop:将PIL图像裁剪成任意大小和纵横比
# Grayscale:将图像转换为灰度图像
# RandomGrayscale:将图像以一定的概率转换为灰度图像
# FiceCrop:把图像裁剪为四个角和一个中心
# TenCrop
# Pad:填充
# ColorJitter:随机改变图像的亮度对比度和饱和度。
相关文章:
Pytorch D2L Subplots方法对画图、图片处理
问题代码 def show_images(imgs, num_rows, num_cols, titlesNone, scale1.5): #save """绘制图像列表""" figsize (num_cols * scale, num_rows * scale) _, axes d2l.plt.subplots(num_rows, num_cols, figsizefigsize) axes axes.flatten…...
MATLAB算法实战应用案例精讲-【目标检测】YOLOV5(补充篇)
目录 算法原理 YOLOv5数据集训练 软硬件背景: 数据集准备 配置文件 模型训练...
WPF中可视化树和逻辑树的区别是什么
在WPF中,用户界面元素被组织成树形结构。这种结构主要分为两种:逻辑树(Logical Tree)和可视化树(Visual Tree)。它们在设计上各有特点和用途。 逻辑树(Logical Tree) 逻辑树是WPF中…...
小迪安全笔记(2)——web应用架构搭建漏洞HTTP数据包代理服务器
Web应用环境架构类 开发语言:php、java、python、ASP、ASPX等程序源码:用的人多了,就成CMS了。中间件容器:IIS、Apache、Nginx、Tomcat、Weblogic、Jboos、glasshfish等数据库类型:Access、Mysql、Mssql、Oracle、Redi…...
[AI]ChatGPT4 与 ChatGPT3.5 区别有多大
ChatGPT 3.5 注册已经不需要手机了,直接邮箱认证就可以,这可真算是好消息,坏消息是 ChatGPT 4 还是要收费。 那么 GPT-3.5 与 GPT-4 区别有多大呢,下面简单测试一下。 以从 TDengine 订阅数据为例,TDengine 算是不太小…...
node实战——koa实现文件上传
文章目录 ⭐前言⭐koa实现文件上传⭐foxapi测试⭐总结⭐结束⭐前言 大家好,我是yma16,本文分享关于node实战——node实战——koa实现文件上传。 本文适用对象:前端初学者转node方向,在校大学生,即将毕业的同学,计算机爱好者。 node系列往期文章 node_windows环境变量配置…...
C++中的this指针
C中的this指针 this 实际上是成员函数的一个形参,在调用成员函数时将对象的地址作为实参传递给 this。不过 this 这个形参是隐式的,它并不出现在代码中,而是在编译阶段由编译器默默地将它添加到参数列表中。 this指针是类的指针,…...
分析日志的一般套路
日志文件很多怎么快速查看? 整机日志一般会有统一的文件名命名规则(如包含时间点),可以根据问题现象时间点大致定位到相应的文件根据日志文件的修改时间属性,定位到相应的文件根据时间点全文件夹搜索内容,…...
使用Flink处理Kafka中的数据_题库子任务_Java语言实现
2024年职业院校技术大赛-高职大数据应用开发赛项专题。 使用Flink处理Kafka中的数据_题库子任务1、2、3_Java语言实现使用Flink处理Kafka中的数据_题库子任务4、5、6_Java语言实现使用Flink处理Kafka中的数据_题库子任务7、8、9_Java语言实现...
k8s运维管理
node管理 node隔离与恢复 1.使用patch命令 #实现node隔离调度 kubectl patch node node1 -p {"spec":{"unschedulable":true}} #节点信息多了一项SchedulingDisabled node1 Ready,SchedulingDisabled <none> 7d3h v1.18.20 #解除 kubectl …...
【最新Tomcat】IntelliJ IDEA通用配置Tomcat教程(超详细)
前言 IntelliJ IDEA是一个强大的集成开发环境,能够大大简化Java应用程序的开发和部署过程。而Tomcat作为一个流行的Java Web服务器,其与IntelliJ IDEA的整合能够提供便捷的开发环境,让开发人员更专注于代码的创作与优化。 在配置IntelliJ IDE…...
安装2023最新版PyCharm来开发Python应用程序
安装2023最新版PyCharm来开发Python应用程序 Install the Latest JetBrains PyCharm Community to Develop Python Applications Python 3.12.0最新版已经由其官网python.org发布,这也是2023年底的最新的版本。 0. PyCharm与Python 自从1991年2月20日࿰…...
【c++随笔13】多态
【c随笔13】多态 多态性(Polymorphism)在面向对象编程中是一个重要概念,它允许以统一的方式处理不同类型的对象,并在运行时动态确定实际执行的方法或函数。一、什么是多态性?1、关键概念:C的多态性2、多态定…...
数据结构【DS】图的应用
图的连通性问题 最少边数 最多边数 无向图非连通 𝒎𝟎 𝒎𝒏−𝟐∗(𝒏−𝟏)/𝟐 无向图连通 𝒎𝒏−𝟏 𝒎𝒏∗(&#…...
图像滤波处理
滤波处理是图像处理中常用的技术之一,用于去除图像中的噪声、平滑图像、边缘检测等。以下是几种常见的滤波处理方法: 1. 均值滤波 (Mean Filtering) 原理: 均值滤波使用一个固定大小的滤波器,在图像上滑动并取周围像素的平均值来…...
中间件安全:Apache 目录穿透.(CVE-2021-41773)
中间件安全:Apache 目录穿透.(CVE-2021-41773) Apache 的 2.4.49、2.4.50 版本 对路径规范化所做的更改中存在一个路径穿越漏洞,攻击者可利用该漏洞读取到Web目录外的其他文件,如系统配置文件、网站源码等,…...
苍穹外卖--菜品分页查询
设计DTO类 Data public class DishPageQueryDTO implements Serializable {private int page;private int pageSize;private String name;private Integer categoryId; //分类idprivate Integer status; //状态 0表示禁用 1表示启用}设计VO类 Data Builder NoArgsConstructor…...
JS原生-弹框+阿里巴巴矢量图
效果: 代码: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content&q…...
vscode c++ 报错identifier “string“ is undefined
vscode c 报identifier “string” is undefined 问题 新装了电脑, 装好vsc和g等, 发现报错 但开头并没问题 解决 shiftctrlp选择 C/C Edit:COnfigurations (JSON)自动生成打开 c_cpp_properties.json添加g路径等 "cStandard": "c11","cppStanda…...
CocoaPods podfile 文件配置
记录一下关于 CocoaPods podfile 文件配置 指定源(Source) 默认情况下,在全局级别指定的源将按照依赖项匹配指定的顺序进行搜索。 对于特定的依赖,可以单独指定依赖源: pod PonyDebugger, :source > https://github.com/CocoaPods/Specs.git使用字库…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
