当前位置: 首页 > news >正文

竞赛选题 身份证识别系统 - 图像识别 深度学习

文章目录

  • 0 前言
  • 1 实现方法
    • 1.1 原理
        • 1.1.1 字符定位
        • 1.1.2 字符识别
        • 1.1.3 深度学习算法介绍
        • 1.1.4 模型选择
    • 2 算法流程
    • 3 部分关键代码
  • 4 效果展示
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 图像识别 深度学习 身份证识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现方法

1.1 原理

1.1.1 字符定位

在Android移动端摄像头拍摄的图片是彩色图像,上传到服务器后为了读取到身份证上的主要信息,就要去除其他无关的元素,因此对身份证图像取得它的灰度图并得到二值化图。

对身份证图像的的二值化有利于对图像内的信息的进一步处理,可以将待识别的信息更加突出。在OpenCV中,提供了读入图像接口函数imread,
首先通过imread将身份证图像读入内存中:

id_card_img = cv2.imread(path_img)

之后再调用转化为灰度图的接口函数cvtColor并给它传入参数COLOR_BGR2GRAY,它就可以实现彩色图到灰度图的转换,代码如下

gray_id_card_img = cv2.cvtColor(color_img, cv2.COLOR_BGR2GRAY)
preprocess_bg_mask = PreprocessBackgroundMask(boundary)

转化为二值化的灰度图后图像如图所示:

在这里插入图片描述

转换成灰度图之后要进行字符定位,通过每一行进行垂直投影,就可以找到所有字段的位置,具体如下:

在这里插入图片描述
然后根据像素点起始位置,确定字符区域,然后将字符区域一一对应放入存放字符的列表中:

 vertical_peek_ranges = extract_peek_ranges_from_array(vertical_sum,minimun_val=40,minimun_range=1)vertical_peek_ranges2d.append(vertical_peek_ranges)

最后的效果图如图所示:

在这里插入图片描述

1.1.2 字符识别

身份证识别中,最重要的是能够识别身份证图像中的中文文字(包括数字和英文字母),这里学长采用深度学习的方式来做:

1)身份证图像涉及个人隐私,很难获取其数据训练集。针对此问题,我采用获取身份证上印刷体汉字和数字的数据训练集的方法,利用Python图像库(PIL)将13类汉字印刷体字体转换成6492个类别,建立了较大的字符训练集;

2)如何获取身份证图片上的字符是在设计中一个重要问题。我采用水平和垂直投影技术,首先对身份证图像进行预处理,然后对图片在水平和垂直方向上像素求和,区分字符与空白区域,完成了身份证图像中字符定位与分割工作,有很好的切分效果;

3)在模型训练中模型的选择与设计是一个重要的环节,本文选择Lenet模型,发现模型层次太浅,然后增加卷积层和池化层,设计出了改进的深层Lenet模型,然后采用Caffe深度学习工具对模型进行训练,并在训练好的模型上进行测试,实验表明,模型的测试精度达到96.2%。

1.1.3 深度学习算法介绍

深度学习技术被提出后,发展迅速,在人工智能领域取得了很好的成绩,越来越多优秀的神经网络也应运而生。深度学习通过建立多个隐层的深层次网络结构,比如卷积神经网络,可以用来研究并处理目前计算机视觉领域的一些热门的问题,如图像识别和图像检索。

深度学习建立从输入数据层到高层输出层语义的映射关系,免去了人工提取特征的步骤,建立了类似人脑神经网的分层模型结构。深度学习的示意图如图所示

在这里插入图片描述

1.1.4 模型选择

在进行网络训练前另一项关键的任务是模型的选择与配置,因为要保证模型的精度,要选一个适合本文身份证信息识别的网络模型。


首先因为汉字识别相当于一个类别很多的图片分类系统,所以先考虑深层的网络模型,优先采用Alexnet网络模型,对于汉字识别这种千分类的问题很合适,但是在具体实施时发现本文获取到的数据训练集每张图片都是6464大小的一通道的灰度图,而Alexnet的输入规格是224224三通道的RGB图像,在输入上不匹配,并且Alexnet在处理像素较高的图片时效果好,用在本文的训练中显然不合适。

其次是Lenet模型,没有改进的Lenet是一个浅层网络模型,如今利用这个模型对手写数字识别精度达到99%以上,效果很好,在实验时我利用在Caffe下的draw_net.py脚本并且用到pydot库来绘制Lenet的网络模型图,实验中绘制的原始Lenet网络模型图如图所示,图中有两个卷积层和两个池化层,网络层次比较浅。

在这里插入图片描述

2 算法流程

在这里插入图片描述

3 部分关键代码

cv2_color_img = cv2.imread(test_image)##放大图片resize_keep_ratio = PreprocessResizeKeepRatio(1024, 1024)cv2_color_img = resize_keep_ratio.do(cv2_color_img)    ##转换成灰度图cv2_img = cv2.cvtColor(cv2_color_img, cv2.COLOR_RGB2GRAY)height, width = cv2_img.shape##二值化  调整自适应阈值 使得图像的像素值更单一、图像更简单adaptive_threshold = cv2.adaptiveThreshold(cv2_img, ##原始图像255,     ##像素值上限cv2.ADAPTIVE_THRESH_GAUSSIAN_C,  ##指定自适应方法Adaptive Method,这里表示领域内像素点加权和cv2.THRESH_BINARY,  ##赋值方法(二值化)11,  ## 规定领域大小(一个正方形的领域)2)   ## 常数C,阈值等于均值或者加权值减去这个常数adaptive_threshold = 255 - adaptive_threshold## 水平方向求和,找到行间隙和字符所在行(numpy)horizontal_sum = np.sum(adaptive_threshold, axis=1)## 根据求和结果获取字符行范围peek_ranges = extract_peek_ranges_from_array(horizontal_sum)vertical_peek_ranges2d = []for peek_range in peek_ranges:start_y = peek_range[0]  ##起始位置end_y = peek_range[1]    ##结束位置line_img = adaptive_threshold[start_y:end_y, :]## 垂直方向求和,分割每一行的每个字符vertical_sum = np.sum(line_img, axis=0)## 根据求和结果获取字符行范围vertical_peek_ranges = extract_peek_ranges_from_array(vertical_sum,minimun_val=40, ## 设最小和为40minimun_range=1)  ## 字符最小范围为1## 开始切割字符vertical_peek_ranges = median_split_ranges(vertical_peek_ranges)## 存放入数组中vertical_peek_ranges2d.append(vertical_peek_ranges)## 去除噪音,主要排除杂质,小的曝光点不是字符的部分filtered_vertical_peek_ranges2d = []for i, peek_range in enumerate(peek_ranges):new_peek_range = []median_w = compute_median_w_from_ranges(vertical_peek_ranges2d[i])for vertical_range in vertical_peek_ranges2d[i]:## 选取水平区域内的字符,当字符与字符间的间距大于0.7倍的median_w,说明是字符if vertical_range[1] - vertical_range[0] > median_w*0.7:new_peek_range.append(vertical_range)filtered_vertical_peek_ranges2d.append(new_peek_range)vertical_peek_ranges2d = filtered_vertical_peek_ranges2dchar_imgs = []crop_zeros = PreprocessCropZeros()resize_keep_ratio = PreprocessResizeKeepRatioFillBG(norm_width, norm_height, fill_bg=False, margin=4)for i, peek_range in enumerate(peek_ranges):for vertical_range in vertical_peek_ranges2d[i]:## 划定字符的上下左右边界区域x = vertical_range[0]y = peek_range[0]w = vertical_range[1] - xh = peek_range[1] - y## 生成二值化图char_img = adaptive_threshold[y:y+h+1, x:x+w+1]## 输出二值化图char_img = crop_zeros.do(char_img)char_img = resize_keep_ratio.do(char_img)## 加入字符图片列表中char_imgs.append(char_img)## 将列表转换为数组np_char_imgs = np.asarray(char_imgs)## 放入模型中识别并返回结果output_tag_to_max_proba = caffe_cls.predict_cv2_imgs(np_char_imgs)ocr_res = ""## 读取结果并展示for item in output_tag_to_max_proba:ocr_res += item[0][0]print(ocr_res.encode("utf-8"))## 生成一些Debug过程产生的图片if debug_dir is not None:path_adaptive_threshold = os.path.join(debug_dir,"adaptive_threshold.jpg")cv2.imwrite(path_adaptive_threshold, adaptive_threshold)seg_adaptive_threshold = cv2_color_img#        color = (255, 0, 0)#        for rect in rects:#            x, y, w, h = rect#            pt1 = (x, y)#            pt2 = (x + w, y + h)#            cv2.rectangle(seg_adaptive_threshold, pt1, pt2, color)color = (0, 255, 0)for i, peek_range in enumerate(peek_ranges):for vertical_range in vertical_peek_ranges2d[i]:x = vertical_range[0]y = peek_range[0]w = vertical_range[1] - xh = peek_range[1] - ypt1 = (x, y)pt2 = (x + w, y + h)cv2.rectangle(seg_adaptive_threshold, pt1, pt2, color)path_seg_adaptive_threshold = os.path.join(debug_dir,"seg_adaptive_threshold.jpg")cv2.imwrite(path_seg_adaptive_threshold, seg_adaptive_threshold)debug_dir_chars = os.path.join(debug_dir, "chars")os.makedirs(debug_dir_chars)for i, char_img in enumerate(char_imgs):path_char = os.path.join(debug_dir_chars, "%d.jpg" % i)cv2.imwrite(path_char, char_img)

4 效果展示

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛选题 身份证识别系统 - 图像识别 深度学习

文章目录 0 前言1 实现方法1.1 原理1.1.1 字符定位1.1.2 字符识别1.1.3 深度学习算法介绍1.1.4 模型选择 2 算法流程3 部分关键代码 4 效果展示5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 图像识别 深度学习 身份证识别…...

什么时候用@MapperScan 注解?

hello,我是小索奇,给大家讲解一下MapperScan注解的用法。 MapperScan 注解是 MyBatis 框架中的一个注解,它的主要作用是扫描指定包路径下的 Mapper 接口,将其注册为 Spring 的 Bean。这样,在使用 MyBatis 进行数据库操作时&#…...

MQTT.js

MQTT.js mqtt.js简介MQTT测试工具mqttboxMQTTX mqtt使用mqtt引入(方式一)mqtt引入(方式二)创建mqtt客户端连接到mqtt代理订阅topic处理接收到的消息重新连接取消订阅发布消息断开连接关闭客户端MQTT APIMQTT在VUE中使用MQTT在Reac…...

html滑动文章标题置顶

position: sticky; 基于用户的滚动位置来定位 首先封装一个组件 例如&#xff1a;AAA组件&#xff08;注意&#xff0c;只能有一层盒子&#xff0c;不能在外面继续包一层div&#xff09; <template><div class"box">{{title}}</div> </templa…...

Android11 桌面默认横屏导致任务键近期任务布局UI显示错误!

/frameworks/base/services/core/java/com/android/server/policy/PhoneWindowManager.java 定义变量&#xff1a;private boolean stch false; keyCode KeyEvent.KEYCODE_APP_SWITCH 取消原来逻辑&#xff0c;采用广播打开近期任务后台 /*/ if (!keyguardOn…...

「Verilog学习笔记」根据状态转移图实现时序电路

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 这是一个典型的米利型状态机。三段式即可解决。 米利型状态机&#xff1a;即输出不仅和当前状态有关&#xff0c;也和输入有关。 其中ST0&#xff0c;ST1&#xff0c;ST3的…...

使用DHorse发布SpringBoot项目到K8S

前言 在介绍DHorse的操作之前&#xff0c;先来介绍一下使用k8s发布应用的步骤&#xff0c;以SpringBoot应用为例进行说明。 1.首先从代码仓库下载代码&#xff0c;比如GitLab&#xff1b; 2.接着进行构建&#xff0c;比如使用Maven&#xff1b; 3.如果要使用k8s作为编排&am…...

Java修仙记之记录一次与前端女修士论道的经历

文章开始之前&#xff0c;想跟我念一句&#xff1a;福生无量天尊&#xff0c;无量寿佛&#xff0c;阿弥陀佛 第一场论道&#xff1a;id更新之争 一个天气明朗的下午&#xff0c;前端的小美女长发姐告诉我&#xff1a;嘿&#xff0c;小后端&#xff0c;你的代码报错了 我答道&am…...

初识linux(1)

文章目录 什么是linux什么是操作系统&#xff1f;开源 怎么装linux的环境基础指令lspwdcdtouchmkdirrmdir与rmmancpmv 什么是linux linux是一款开源操作系统 什么是操作系统&#xff1f; 操作系统&#xff1a;一种对计算机所有计算机软硬件进行控制和管理的系统软件 开源 开源&…...

投资黄金:如何选择正确的黄金品种增加收益?

黄金一直以来都是备受投资者青睐的避险资产&#xff0c;然而&#xff0c;在庞大的黄金市场中&#xff0c;选择适合自己的黄金品种成为影响收益的关键因素。黄金投资并不只有一种方式&#xff0c;而是有很多种不同的黄金品种可以选择。每种黄金品种都有其独特的特点和风险&#…...

Rust错误处理机制:优雅地管理错误

大家好&#xff01;我是lincyang。 今天&#xff0c;我们要探讨的是Rust语言中的错误处理机制。 Rust作为一种系统编程语言&#xff0c;对错误处理的重视程度是非常高的。它提供了一套既安全又灵活的机制来处理可能出现的错误。 Rust错误处理的两大类别 在Rust中&#xff0…...

docker-compose安装harbor

docker-compose安装harbor 环境&#xff1a;centos7 1、安装docker 官方文档 https://docs.docker.com/engine/install/centos/ 1、卸载旧版本 $ sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate …...

【python学习】基础篇-常用模块-shutil文件和目录操作

shutil模块是Python标准库中的一个模块&#xff0c;提供了对文件和目录进行高级操作的函数。 以下是shutil模块的一些常用函数&#xff1a; 1.复制文件&#xff1a; 将源文件src复制到目标文件dst。如果follow_symlinks为True,则会跟随符号链接。 shutil.copy(src, dst, *, f…...

鸿蒙系统调研适配

写在前面&#xff1a; 以下内容基于我个人翻阅的官方资料以及自己的理解写的&#xff0c;可能存在认知和理解上的偏差&#xff0c;有些地方并不一定是对的&#xff0c;请谨慎对待&#xff0c;注意甄别&#xff01; 一、鸿蒙OS是什么&#xff1f; 华为推出的多端统一平台&…...

SAP gui 登录条目不让修改

今天碰到用户安装的GUI 770 版本&#xff0c;不让修改&#xff0c;也不让添加 后面再选项里面找到了...

华为ac+fit无线2层漫游配置案例

ap的管理dhcp在ac上&#xff0c;业务dhcp在汇聚交换机上、并且带2层漫游 R1: interface GigabitEthernet0/0/0 ip address 11.1.1.1 255.255.255.0 ip route-static 12.2.2.0 255.255.255.0 11.1.1.2 ip route-static 192.168.0.0 255.255.0.0 11.1.1.2 lsw1: vlan batch 100…...

nginx的location中配置路径讲解

初次接触&#xff1a;可能会遇到404找不到页面的错误&#xff0c;主要原因是配置路径问题&#xff1b; 规则&#xff1a;ip port 等于 root&#xff0c;假设server的配置如下&#xff1a; server { listen 80; #端口号 location / { root /opt/sta…...

No appropriate protocol -- Mysql

DataGrip连接mysql报以下异常信息&#xff1a; javax.net.ssl.SSLHandshakeException: No appropriate protocol (protocol is disabled or cipher suites are inappropriate) The following required algorithms might be disabled: SSLv3, TLSv1, TLSv1.1, RC4, DES, MD5wi…...

Using Set Processing Effectively 有效地使用集合处理

Using Set Processing Effectively 有效地使用集合处理 The information in the topics that follow applies if you are developing new or upgrading older Application Engine programs to adhere to a set-based model. 如果要开发新的应用程序引擎程序或升级旧的应用程序…...

HarmonyOS开发Java与ArkTS如何抉择

在“鸿蒙系统实战短视频App 从0到1掌握HarmonyOS”视频课程中&#xff0c;很多学员来问我&#xff0c;在HarmonyOS开发过程中&#xff0c;面对Java与ArkTS&#xff0c;应该选哪样&#xff1f; 本文详细分析Java与ArkTS在HarmonyOS开发过程的区别&#xff0c;力求解答学员的一些…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...