基于Acconeer的A121-60GHz毫米波雷达传感器SDK移植及测距示例(STM32L496为例)
基于Acconeer的A121-60GHz毫米波雷达传感器SDK移植及测距示例(STM32L496为例)
工程:
Keil工程资源
参考资料:
A121 datasheet 1.3
A121 HAL Software Integration User Guide
A121 STM32CubeIDE User Guide
官方参考示例工程:
XM125_MDK-AC5_A121_v1_0_0
(XM125相当于A121的最小系统板 硬件连接与裸机相同)
文章目录
- A121
- 引脚配置
- SDK移植
- RSS的SDK移植
- SDK移植函数
- SPI传输函数
- 等待中断函数
- 延时函数修改
- 函数指针赋值
- SDK示例移植
- 堆栈配置
- 测试SDK
- 上电测试
- 测距测试
- 附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作
- SysTick系统定时器精准延时
- 延时函数
- 阻塞延时
- 非阻塞延时
- 位带操作
- 位带代码
- 位带宏定义
- 总线函数
- 一、位带操作理论及实践
- 二、如何判断MCU的外设是否支持位带
A121
该传感器与MCU连接只需要一组SPI和一个中断GPIO、一个使能控制GPIO

且SPI的CPOL和CPHA都为0(空闲时低电平 且在第一个变化沿进行采样)

SPI速度可以达到50MHz 但不建议

A121作为从机使用 所以输出引脚为MISO 输入引脚为MOSI

引脚配置
与A121 STM32CubeIDE User Guide中介绍的基本相同
但建议SPI的速度设置为10M以下 并且选择8位数据传输
同时选中软件片选
关闭NSSP

之所以要选中如下配置 可以参考:
【STM32】HAL库中的SPI传输(可利用中断或DMA进行连续传输)
同时开启中断

GPIO配置:
包括软件片选 使能和中断

同样得开启GPIO中断

SDK移植
主要参考A121 HAL Software Integration User Guide中的内容
详细介绍了该如何进行移植前的配置
如:


也可以直接参考XM125_MDK-AC5_A121_v1_0_0示例工程来进行配置
其被移植部分的工程结构如下:

RSS的SDK移植

如图 将相关头文件拷贝到工程目录后 建议新建一个头文件用于导入这些库
比如:
#ifndef __A121_H__
#define __A121_H__
#include "main.h"
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include <complex.h>
#include <math.h>#include "acc_config.h"
#include "acc_config_subsweep.h"
#include "acc_definitions_a121.h"
#include "acc_definitions_common.h"
#include "acc_detector_distance.h"
#include "acc_detector_distance_definitions.h"
#include "acc_detector_presence.h"
#include "acc_hal_definitions_a121.h"
#include "acc_processing.h"
#include "acc_rss_a121.h"
#include "acc_sensor.h"
#include "acc_version.h"#include "acc_hal_integration_a121.h"
#include "acc_integration.h"
#include "acc_integration_log.h"#include "acc_control_helper.h"
#include "acc_processing_helpers.h"#include "ref_app_smart_presence.h"
#include "ref_app_tank_level.h"#include "example_service_subsweeps.h"
#include "example_service_multiple_configurations.h"
#include "example_service_hibernate.h"
#include "example_service.h"
#include "example_processing_subtract_adaptive_bg.h"
#include "example_processing_peak_interpolation.h"
#include "example_processing_noncoherent_mean.h"
#include "example_processing_coherent_mean.h"
#include "example_processing_amplitude.h"
#include "example_diagnostic_test.h"
#include "example_detector_presence_multiple_configurations.h"
#include "example_detector_presence.h"
#include "example_detector_distance_recorded_threshold.h"
#include "example_detector_distance_close_range.h"
#include "example_detector_distance.h"
#include "example_control_helper.h"
#include "example_bring_up.h"void Init_A121(void);#endif
当然 rss/lib目录下的静态库也要导入

并且静态库要配置为library file

SDK移植函数
位于integration目录下

除了头文件外 需要覆写三个.c文件中的函数
在这里 需要把工程中不同的引脚名称重新定义以下
比如:
#define A121_SPI_HANDLE A121_SPI_Handle#define SPI_SS_GPIO_Port A121_SPI_CS_GPIO_Port
#define SPI_SS_Pin A121_SPI_CS_Pin#define ENABLE_GPIO_Port A121_EN_GPIO_Port
#define ENABLE_Pin A121_EN_Pin#define INTERRUPT_GPIO_Port A121_EXTI_GPIO_Port
#define INTERRUPT_Pin A121_EXTI_Pin
stm32.c中的不用改 只是一些基本延时、内存操作
log.c中注释掉fflush(stdout);(这里是清空stdout的语句 其中printf需要进行重定向 如果重定向过了 就不需要这一句了)
重定向参考:
【STM32】HAL库UART串口配置及重定向(解决接收中断与scanf不能同时工作、重定向卡死、低功耗一直唤醒的问题)
xm125.c中的函数需要进行更改:
前文说到 xm125就是A121的最小系统板 所以硬件的连接是一样的 所以可以直接拿来移植
SPI传输函数
前文说到 我们配置的SPI是8位传输
所以这里需要建立一个8位SPI传输函数
示例工程上的函数是16位 直接改成8位即可
同样 我这里是用中断的方式来进行连续传输的(如果要使用10M以上的连续传输 则替换成DMA的方式)
static void acc_hal_integration_sensor_transfer8(acc_sensor_id_t sensor_id, uint8_t *buffer, size_t buffer_length){(void)sensor_id; // Ignore parameter sensor_id// Set SPI_SS LOW (Activate)HAL_GPIO_WritePin(SPI_SS_GPIO_Port, SPI_SS_Pin, GPIO_PIN_RESET);//const uint32_t SPI_TRANSMIT_RECEIVE_TIMEOUT = 5000;#ifdef A121_USE_SPI_DMAspi_transfer_complete = false;HAL_StatusTypeDef status = HAL_SPI_TransmitReceive_DMA(&A121_SPI_HANDLE, (uint8_t *)buffer, (uint8_t *)buffer, buffer_length);if (status != HAL_OK){return;}uint32_t start = HAL_GetTick();while (!spi_transfer_complete && (HAL_GetTick() - start) < SPI_TRANSMIT_RECEIVE_TIMEOUT){// Turn off interruptsdisable_interrupts();// Check once more so that the interrupt have not occurredif (!spi_transfer_complete){__WFI();}// Enable interrupt again, the ISR will execute directly after thisenable_interrupts();}
#elseHAL_SPI_TransmitReceive_IT(&A121_SPI_HANDLE, (uint8_t *)buffer, (uint8_t *)buffer, buffer_length);while(A121_SPI_HANDLE.State!=HAL_SPI_STATE_READY && A121_SPI_HANDLE.State!=HAL_SPI_STATE_ERROR);
#endif// Set SPI_SS HIGH (De-activate)HAL_GPIO_WritePin(SPI_SS_GPIO_Port, SPI_SS_Pin, GPIO_PIN_SET);
}
等待中断函数
这里是官方写法 但是SysTick在我的工程中会关闭 可以替换成其他的超时计算方式
bool acc_hal_integration_wait_for_sensor_interrupt(acc_sensor_id_t sensor_id, uint32_t timeout_ms)
{(void)sensor_id; // Ignore parameter sensor_idconst uint32_t wait_begin_ms = HAL_GetTick();while ((HAL_GPIO_ReadPin(INTERRUPT_GPIO_Port, INTERRUPT_Pin) != GPIO_PIN_SET) &&(HAL_GetTick() - wait_begin_ms < timeout_ms)){// Wait for the GPIO interruptdisable_interrupts();// Check again so that IRQ did not occurif (HAL_GPIO_ReadPin(INTERRUPT_GPIO_Port, INTERRUPT_Pin) != GPIO_PIN_SET){__WFI();}// Enable interrupts again to allow pending interrupt to be handledenable_interrupts();}return HAL_GPIO_ReadPin(INTERRUPT_GPIO_Port, INTERRUPT_Pin) == GPIO_PIN_SET;
}
延时函数修改
为了避免HAL库的延时函数出错 统一换成我们自己的延时函数
void acc_hal_integration_sensor_enable(acc_sensor_id_t sensor_id)
{(void)sensor_id; // Ignore parameter sensor_idHAL_GPIO_WritePin(ENABLE_GPIO_Port, ENABLE_Pin, GPIO_PIN_SET);HAL_GPIO_WritePin(SPI_SS_GPIO_Port, SPI_SS_Pin, GPIO_PIN_SET);// Wait 2 ms to make sure that the sensor crystal have time to stabilizedelay_ms(2);
}void acc_hal_integration_sensor_disable(acc_sensor_id_t sensor_id)
{(void)sensor_id; // Ignore parameter sensor_idHAL_GPIO_WritePin(SPI_SS_GPIO_Port, SPI_SS_Pin, GPIO_PIN_RESET);HAL_GPIO_WritePin(ENABLE_GPIO_Port, ENABLE_Pin, GPIO_PIN_RESET);// Wait after disable to leave the sensor in a known state// in case the application intends to enable the sensor directlydelay_ms(2);
}
函数指针赋值
最后把定义的函数指针全部赋值到结构体内即可
这里需要注意的是 8位SPI传输和16位SPI传输选其一即可 我们用的8位 所以16位对应的函数为NULL
const acc_hal_a121_t *acc_hal_rss_integration_get_implementation(void)
{static const acc_hal_a121_t val ={.max_spi_transfer_size = STM32_MAX_TRANSFER_SIZE,.mem_alloc = malloc,.mem_free = free,.transfer = acc_hal_integration_sensor_transfer8,.log = acc_integration_log,.optimization.transfer16 = NULL,};return &val;
}
SDK示例移植
直接移植即可

其中 acc_processing_helpers.c这里用到了<complex.h>头文件 用于复数操作 但多数AC5编译器不支持 可以换成AC6 不过我这里没用到相关函数 所以没有进行配置
堆栈配置
如图:

其中 在函数acc_example_bring_up中 用于分配内存
雷达数组大小ACC_RSS_ASSEMBLY_TEST_MIN_BUFFER_SIZE是2048 所以还是给大一点堆栈空间好
测试SDK
官方示例中给出了几个函数用于测试各种功能
acc_example_bring_up(0,NULL); //测试雷达与MCU的通讯是否正常,A121雷达外部电路是否正常。acc_example_service(0,NULL); //原始数据。高精度测距,复杂场景测距从此入手。acc_example_detector_distance(0,NULL); //距离检测器,适用于简单场景测距。acc_example_detector_presence(0,NULL); //存在检测器,可用于人体检测。acc_example_processing_amplitude(0,NULL); //从Sparse IQ服务的原始数据提取距离信息的处理方法。
上电测试
调用acc_example_bring_up(0,NULL); 函数即可
输出效果:
其中 A121开头的为SDK中的函数运行输出

测距测试
调用acc_example_detector_distance(0,NULL); 函数即可
输出效果:
其中 A121开头的为SDK中的函数运行输出
该示例可以输出多个目标

同时会在开始测距之前初始化相关配置:
[A121] Acconeer software version a121-v1.0.0
[A121] 00:00:00.000 (I) (detector_distance) Detector Distance Config
[A121] 00:00:00.000 (I) (detector_distance) sensor: 1
[A121] 00:00:00.000 (I) (detector_distance) start_m: 0.250000
[A121] 00:00:00.000 (I) (detector_distance) end_m: 3.000000
[A121] 00:00:00.000 (I) (detector_distance) max_step_length: 0
[A121] 00:00:00.000 (I) (detector_distance) max_profile: PROFILE_5
[A121] 00:00:00.000 (I) (detector_distance) signal_quality: 15.000000
[A121] 00:00:00.000 (I) (detector_distance) threshold_method: CFAR
[A121] 00:00:00.000 (I) (detector_distance) peak_sorting_method: STRONGEST
[A121] 00:00:00.000 (I) (detector_distance) num_frames_in_recorded_threshold: 100
[A121] 00:00:00.000 (I) (detector_distance) fixed_threshold_value: 100.000000
[A121] 00:00:00.000 (I) (detector_distance) threshold_sensitivity: 0.500000
[A121] 00:00:00.000 (I) (detector_distance) Offset Calibration Config
[A121] 00:00:00.000 (I) (config) sweep_rate: 0.000000
[A121] 00:00:00.000 (I) (config) frame_rate: 0.000000
[A121] 00:00:00.000 (I) (config) sweeps_per_frame: 1
[A121] 00:00:00.000 (I) (config) continuous_sweep_mode: false
[A121] 00:00:00.000 (I) (config) double_buffering: false
[A121] 00:00:00.000 (I) (config) inter_frame_idle_state: DEEP_SLEEP
[A121] 00:00:00.000 (I) (config) inter_sweep_idle_state: READY
[A121] 00:00:00.000 (I) (config) num_subsweeps: 1
[A121] 00:00:00.000 (I) (config) subsweep: 0
[A121] 00:00:00.000 (I) (config) start_point : -30
[A121] 00:00:00.000 (I) (config) num_points : 50
[A121] 00:00:00.000 (I) (config) step_length : 1
[A121] 00:00:00.000 (I) (config) hwaas : 64
[A121] 00:00:00.000 (I) (config) receiver_gain : 16
[A121] 00:00:00.000 (I) (config) enable_tx : true
[A121] 00:00:00.000 (I) (config) phase_enhancement: true
[A121] 00:00:00.000 (I) (config) enable_loopback : true
[A121] 00:00:00.000 (I) (config) prf : PROFILE_1
[A121] 00:00:00.000 (I) (config) profile : 13.0MHz
[A121] 00:00:00.000 (I) (detector_distance) Far Noise Calibration
[A121] 00:00:00.000 (I) (config) sweep_rate: 0.000000
[A121] 00:00:00.000 (I) (config) frame_rate: 0.000000
[A121] 00:00:00.000 (I) (config) sweeps_per_frame: 1
[A121] 00:00:00.000 (I) (config) continuous_sweep_mode: false
[A121] 00:00:00.000 (I) (config) double_buffering: false
[A121] 00:00:00.000 (I) (config) inter_frame_idle_state: DEEP_SLEEP
[A121] 00:00:00.000 (I) (config) inter_sweep_idle_state: READY
[A121] 00:00:00.000 (I) (config) num_subsweeps: 4
[A121] 00:00:00.000 (I) (config) subsweep: 0
[A121] 00:00:00.000 (I) (config) start_point : 0
[A121] 00:00:00.000 (I) (config) num_points : 220
[A121] 00:00:00.000 (I) (config) step_length : 1
[A121] 00:00:00.000 (I) (config) hwaas : 2
[A121] 00:00:00.000 (I) (config) receiver_gain : 10
[A121] 00:00:00.000 (I) (config) enable_tx : false
[A121] 00:00:00.000 (I) (config) phase_enhancement: true
[A121] 00:00:00.000 (I) (config) enable_loopback : false
[A121] 00:00:00.000 (I) (config) prf : PROFILE_1
[A121] 00:00:00.000 (I) (config) profile : 19.5MHz
[A121] 00:00:00.000 (I) (config) subsweep: 1
[A121] 00:00:00.000 (I) (config) start_point : 0
[A121] 00:00:00.000 (I) (config) num_points : 220
[A121] 00:00:00.000 (I) (config) step_length : 1
[A121] 00:00:00.000 (I) (config) hwaas : 5
[A121] 00:00:00.000 (I) (config) receiver_gain : 10
[A121] 00:00:00.000 (I) (config) enable_tx : false
[A121] 00:00:00.000 (I) (config) phase_enhancement: true
[A121] 00:00:00.000 (I) (config) enable_loopback : false
[A121] 00:00:00.000 (I) (config) prf : PROFILE_3
[A121] 00:00:00.000 (I) (config) profile : 15.6MHz
[A121] 00:00:00.000 (I) (config) subsweep: 2
[A121] 00:00:00.000 (I) (config) start_point : 0
[A121] 00:00:00.000 (I) (config) num_points : 220
[A121] 00:00:00.000 (I) (config) step_length : 1
[A121] 00:00:00.000 (I) (config) hwaas : 7
[A121] 00:00:00.000 (I) (config) receiver_gain : 10
[A121] 00:00:00.000 (I) (config) enable_tx : false
[A121] 00:00:00.000 (I) (config) phase_enhancement: true
[A121] 00:00:00.000 (I) (config) enable_loopback : false
[A121] 00:00:00.000 (I) (config) prf : PROFILE_5
[A121] 00:00:00.000 (I) (config) profile : 15.6MHz
[A121] 00:00:00.000 (I) (config) subsweep: 3
[A121] 00:00:00.000 (I) (config) start_point : 0
[A121] 00:00:00.000 (I) (config) num_points : 220
[A121] 00:00:00.000 (I) (config) step_length : 1
[A121] 00:00:00.000 (I) (config) hwaas : 15
[A121] 00:00:00.000 (I) (config) receiver_gain : 10
[A121] 00:00:00.000 (I) (config) enable_tx : false
[A121] 00:00:00.000 (I) (config) phase_enhancement: true
[A121] 00:00:00.000 (I) (config) enable_loopback : false
[A121] 00:00:00.000 (I) (config) prf : PROFILE_5
[A121] 00:00:00.000 (I) (config) profile : 15.6MHz
[A121] 00:00:00.000 (I) (detector_distance) Far Sensor
[A121] 00:00:00.000 (I) (config) sweep_rate: 0.000000
[A121] 00:00:00.000 (I) (config) frame_rate: 0.000000
[A121] 00:00:00.000 (I) (config) sweeps_per_frame: 1
[A121] 00:00:00.000 (I) (config) continuous_sweep_mode: false
[A121] 00:00:00.000 (I) (config) double_buffering: false
[A121] 00:00:00.000 (I) (config) inter_frame_idle_state: DEEP_SLEEP
[A121] 00:00:00.000 (I) (config) inter_sweep_idle_state: READY
[A121] 00:00:00.000 (I) (config) num_subsweeps: 4
[A121] 00:00:00.000 (I) (config) subsweep: 0
[A121] 00:00:00.000 (I) (config) start_point : 48
[A121] 00:00:00.000 (I) (config) num_points : 87
[A121] 00:00:00.000 (I) (config) step_length : 4
[A121] 00:00:00.000 (I) (config) hwaas : 2
[A121] 00:00:00.000 (I) (config) receiver_gain : 10
[A121] 00:00:00.000 (I) (config) enable_tx : true
[A121] 00:00:00.000 (I) (config) phase_enhancement: true
[A121] 00:00:00.000 (I) (config) enable_loopback : false
[A121] 00:00:00.000 (I) (config) prf : PROFILE_1
[A121] 00:00:00.000 (I) (config) profile : 19.5MHz
[A121] 00:00:00.000 (I) (config) subsweep: 1
[A121] 00:00:00.000 (I) (config) start_point : 120
[A121] 00:00:00.000 (I) (config) num_points : 68
[A121] 00:00:00.000 (I) (config) step_length : 12
[A121] 00:00:00.000 (I) (config) hwaas : 5
[A121] 00:00:00.000 (I) (config) receiver_gain : 10
[A121] 00:00:00.000 (I) (config) enable_tx : true
[A121] 00:00:00.000 (I) (config) phase_enhancement: true
[A121] 00:00:00.000 (I) (config) enable_loopback : false
[A121] 00:00:00.000 (I) (config) prf : PROFILE_3
[A121] 00:00:00.000 (I) (config) profile : 15.6MHz
[A121] 00:00:00.000 (I) (config) subsweep: 2
[A121] 00:00:00.000 (I) (config) start_point : 264
[A121] 00:00:00.000 (I) (config) num_points : 30
[A121] 00:00:00.000 (I) (config) step_length : 24
[A121] 00:00:00.000 (I) (config) hwaas : 7
[A121] 00:00:00.000 (I) (config) receiver_gain : 10
[A121] 00:00:00.000 (I) (config) enable_tx : true
[A121] 00:00:00.000 (I) (config) phase_enhancement: true
[A121] 00:00:00.000 (I) (config) enable_loopback : false
[A121] 00:00:00.000 (I) (config) prf : PROFILE_5
[A121] 00:00:00.000 (I) (config) profile : 15.6MHz
[A121] 00:00:00.000 (I) (config) subsweep: 3
[A121] 00:00:00.000 (I) (config) start_point : 984
[A121] 00:00:00.000 (I) (config) num_points : 25
[A121] 00:00:00.000 (I) (config) step_length : 24
[A121] 00:00:00.000 (I) (config) hwaas : 15
[A121] 00:00:00.000 (I) (config) receiver_gain : 10
[A121] 00:00:00.000 (I) (config) enable_tx : true
[A121] 00:00:00.000 (I) (config) phase_enhancement: true
[A121] 00:00:00.000 (I) (config) enable_loopback : false
[A121] 00:00:00.000 (I) (config) prf : PROFILE_5
[A121] 00:00:00.000 (I) (config) profile : 15.6MHz
输出多个目标点时 直接在后面进行打印:

附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作
SysTick系统定时器精准延时
延时函数
SysTick->LOAD中的值为计数值
计算方法为工作频率值/分频值
比如工作频率/1000 则周期为1ms
以ADuCM4050为例:
#include "ADuCM4050.h"void delay_ms(unsigned int ms)
{SysTick->LOAD = 26000000/1000-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能52MHz的系统定时器while(ms--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待}SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 26000000/1000/1000-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能52MHz的系统定时器while(us--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待}SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
其中的52000000表示芯片的系统定时器频率 32系列一般为外部定时器频率的两倍
Cortex-M架构SysTick系统定时器阻塞和非阻塞延时
阻塞延时
首先是最常用的阻塞延时
void delay_ms(unsigned int ms)
{SysTick->LOAD = 50000000/1000-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器while(ms--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待}SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 50000000/1000/1000-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器while(us--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待}SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
50000000表示工作频率
分频后即可得到不同的延时时间
以此类推
那么 不用两个嵌套while循环 也可以写成:
void delay_ms(unsigned int ms)
{SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
但是这种写法有个弊端
那就是输入ms后,最大定时不得超过计数值,也就是不能超过LOAD的最大值,否则溢出以后,则无法正常工作
而LOAD如果最大是32位 也就是4294967295
晶振为50M的话 50M的计数值为1s 4294967295计数值约为85s
固最大定时时间为85s
但用嵌套while的话 最大可以支持定时4294967295*85s
非阻塞延时
如果采用非阻塞的话 直接改写第二种方法就好了:
void delay_ms(unsigned int ms)
{SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待//SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles) 载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag 清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系统定时器//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待//SysTick->CTRL = 0; // Disable SysTick 关闭系统定时器
}
将等待和关闭定时器语句去掉
在使用时加上判断即可变为阻塞:
delay_ms(500);
while ((SysTick->CTRL & 0x00010000)==0);
SysTick->CTRL = 0;
在非阻塞状态下 可以提交定时器后 去做别的事情 然后再来等待
不过这样又有一个弊端 那就是定时器会自动重载 可能做别的事情以后 定时器跑过了 然后就要等85s才能停下
故可以通过内部定时器来进行非阻塞延时函数的编写
基本上每个mcu的内部定时器都可以配置自动重载等功能 网上资料很多 这里就不再阐述了
位带操作
位带代码
M3、M4架构的单片机 其输出口地址为端口地址+20 输入为+16
M0架构的单片机 其输出口地址为端口地址+12 输入为+8
以ADuCM4050为列:
位带宏定义
#ifndef __GPIO_H__
#define __GPIO_H__
#include "ADuCM4050.h"
#include "adi_gpio.h"#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))#define GPIO0_ODR_Addr (ADI_GPIO0_BASE+20) //0x40020014
#define GPIO0_IDR_Addr (ADI_GPIO0_BASE+16) //0x40020010#define GPIO1_ODR_Addr (ADI_GPIO1_BASE+20) //0x40020054
#define GPIO1_IDR_Addr (ADI_GPIO1_BASE+16) //0x40020050#define GPIO2_ODR_Addr (ADI_GPIO2_BASE+20) //0x40020094
#define GPIO2_IDR_Addr (ADI_GPIO2_BASE+16) //0x40020090#define GPIO3_ODR_Addr (ADI_GPIO3_BASE+20) //0x400200D4
#define GPIO3_IDR_Addr (ADI_GPIO3_BASE+16) //0x400200D0#define P0_O(n) BIT_ADDR(GPIO0_ODR_Addr,n) //输出
#define P0_I(n) BIT_ADDR(GPIO0_IDR_Addr,n) //输入 #define P1_O(n) BIT_ADDR(GPIO1_ODR_Addr,n) //输出
#define P1_I(n) BIT_ADDR(GPIO1_IDR_Addr,n) //输入 #define P2_O(n) BIT_ADDR(GPIO2_ODR_Addr,n) //输出
#define P2_I(n) BIT_ADDR(GPIO2_IDR_Addr,n) //输入 #define P3_O(n) BIT_ADDR(GPIO3_ODR_Addr,n) //输出
#define P3_I(n) BIT_ADDR(GPIO3_IDR_Addr,n) //输入 #define Port0 (ADI_GPIO_PORT0)
#define Port1 (ADI_GPIO_PORT1)
#define Port2 (ADI_GPIO_PORT2)
#define Port3 (ADI_GPIO_PORT3)#define Pin0 (ADI_GPIO_PIN_0)
#define Pin1 (ADI_GPIO_PIN_1)
#define Pin2 (ADI_GPIO_PIN_2)
#define Pin3 (ADI_GPIO_PIN_3)
#define Pin4 (ADI_GPIO_PIN_4)
#define Pin5 (ADI_GPIO_PIN_5)
#define Pin6 (ADI_GPIO_PIN_6)
#define Pin7 (ADI_GPIO_PIN_7)
#define Pin8 (ADI_GPIO_PIN_8)
#define Pin9 (ADI_GPIO_PIN_9)
#define Pin10 (ADI_GPIO_PIN_10)
#define Pin11 (ADI_GPIO_PIN_11)
#define Pin12 (ADI_GPIO_PIN_12)
#define Pin13 (ADI_GPIO_PIN_13)
#define Pin14 (ADI_GPIO_PIN_14)
#define Pin15 (ADI_GPIO_PIN_15)void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag);
void GPIO_BUS_OUT(unsigned int port,unsigned int num);void P0_BUS_O(unsigned int num);
unsigned int P0_BUS_I(void);void P1_BUS_O(unsigned int num);
unsigned int P1_BUS_I(void);void P2_BUS_O(unsigned int num);
unsigned int P2_BUS_I(void);void P3_BUS_O(unsigned int num);
unsigned int P3_BUS_I(void);#endif
总线函数
#include "ADuCM4050.h"
#include "adi_gpio.h"
#include "GPIO.h"void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag)
{switch(port){case 0:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;case 1:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;case 2:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;case 3:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;default:port=0;break;}
}void GPIO_BUS_OUT(unsigned int port,unsigned int num) //num最大为0xffff
{int i;for(i=0;i<16;i++){GPIO_OUT(port,i,(num>>i)&0x0001);}
}void P0_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P0_O(i)=(num>>i)&0x0001;}
}
unsigned int P0_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P0_I(i)<<i)&0xFFFF;}return num;
}void P1_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P1_O(i)=(num>>i)&0x0001;}
}
unsigned int P1_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P1_I(i)<<i)&0xFFFF;}return num;
}void P2_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P2_O(i)=(num>>i)&0x0001;}
}
unsigned int P2_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P2_I(i)<<i)&0xFFFF;}return num;
}void P3_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P3_O(i)=(num>>i)&0x0001;}
}
unsigned int P3_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P3_I(i)<<i)&0xFFFF;}return num;
}
一、位带操作理论及实践
位带操作的概念其实30年前就有了,那还是 CM3 将此能力进化,这里的位带操作是 8051 位寻址区的威力大幅加强版
位带区: 支持位带操作的地址区
位带别名: 对别名地址的访问最终作 用到位带区的访问上(注意:这中途有一个 地址映射过程)
位带操作对于硬件 I/O 密集型的底层程序最有用处
支持了位带操作后,可以使用普通的加载/存储指令来对单一的比特进行读写。在CM4中,有两个区中实现了位带。其中一个是SRAM区的最低1MB范围,第二个则是片内外设区的最低1MB范围。这两个区中的地址除了可以像普通的RAM一样使用外,它们还都有自己的“位带别名区”,位带别名区把每个比特膨胀成一个32位的字。当你通过位带别名区访问这些字时,就可以达到访问原始比特的目的。
位操作就是可以单独的对一个比特位读和写,类似与51中sbit定义的变量,stm32中通过访问位带别名区来实现位操作的功能
STM32中有两个地方实现了位带,一个是SRAM,一个是片上外设。

(1)位带本质上是一块地址区(例如每一位地址位对应一个寄存器)映射到另一片地址区(实现每一位地址位对应一个寄存器中的一位),该区域就叫做位带别名区,将每一位膨胀成一个32位的字。
(2)位带区的4个字节对应实际寄存器或内存区的一个位,虽然变大到4个字节,但实际上只有最低位有效(代表0或1)
只有位带可以直接用=赋值的方式来操作寄存器 位带是把寄存器上的每一位 膨胀到32位 映射到位带区 比如0x4002 0000地址的第0个bit 映射到位带区的0地址 那么其对应的位带映射地址为0x00 - 0x04 一共32位 但只有LSB有效 采用位带的方式用=赋值时 就是把位带区对应的LSB赋值 然后MCU再转到寄存器对应的位里面 寄存器操作时 如果不改变其他位上面的值 那就只能通过&=或者|=的方式进行

要设置0x2000 0000这个字节的第二个位bit2为1,使用位带操作的步骤有:
1、将1写入位 带别名区对应的映射地址(即0x22000008,因为1bit对应4个byte);
2、将0x2000 0000的值 读取到内部的缓冲区(这一步骤是内核完成的,属于原子操作,不需要用户操作);
3、将bit2置1,再把值写 回到0x2000 0000(属于原子操作,不需要用户操作)。
关于GPIO引脚对应的访问地址,可以参考以下公式
寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4
如:端口F访问的起始地址GPIOF_BASE
#define GPIOF ((GPIO_TypeDef *)GPIOF_BASE)

但好在官方库里面都帮我们定义好了 只需要在BASE地址加上便宜即可
例如:
GPIOF的ODR寄存器的地址 = GPIOF_BASE + 0x14
寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4
设置PF9引脚的话:
uint32_t *PF9_BitBand =
*(uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR– 0x40000000) *32 + 9*4)
封装一下:
#define PFout(x) *(volatile uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR – 0x40000000) *32 + x*4)
现在 可以把通用部分封装成一个小定义:
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
那么 设置PF引脚的函数可以定义:
#define GPIOF_ODR_Addr (GPIOF_BASE+20) //0x40021414
#define GPIOF_IDR_Addr (GPIOF_BASE+16) //0x40021410 #define PF_O(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出
#define PF_I(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入
若使PF9输入输出则:
PF_O(9)=1; //输出高电平
uint8_t dat = PF_I(9); //获取PF9引脚的值
总线输入输出:
void PF_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PF_O(i)=(num>>i)&0x0001;}
}
unsigned int PF_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PF_I(i)<<i)&0xFFFF;}return num;
}
STM32的可用下面的函数:
#ifndef __GPIO_H__
#define __GPIO_H__
#include "stm32l496xx.h"#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))#define GPIOA_ODR_Addr (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr (GPIOB_BASE+20) //0x40020414
#define GPIOC_ODR_Addr (GPIOC_BASE+20) //0x40020814
#define GPIOD_ODR_Addr (GPIOD_BASE+20) //0x40020C14
#define GPIOE_ODR_Addr (GPIOE_BASE+20) //0x40021014
#define GPIOF_ODR_Addr (GPIOF_BASE+20) //0x40021414
#define GPIOG_ODR_Addr (GPIOG_BASE+20) //0x40021814
#define GPIOH_ODR_Addr (GPIOH_BASE+20) //0x40021C14
#define GPIOI_ODR_Addr (GPIOI_BASE+20) //0x40022014 #define GPIOA_IDR_Addr (GPIOA_BASE+16) //0x40020010
#define GPIOB_IDR_Addr (GPIOB_BASE+16) //0x40020410
#define GPIOC_IDR_Addr (GPIOC_BASE+16) //0x40020810
#define GPIOD_IDR_Addr (GPIOD_BASE+16) //0x40020C10
#define GPIOE_IDR_Addr (GPIOE_BASE+16) //0x40021010
#define GPIOF_IDR_Addr (GPIOF_BASE+16) //0x40021410
#define GPIOG_IDR_Addr (GPIOG_BASE+16) //0x40021810
#define GPIOH_IDR_Addr (GPIOH_BASE+16) //0x40021C10
#define GPIOI_IDR_Addr (GPIOI_BASE+16) //0x40022010 #define PA_O(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出
#define PA_I(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入 #define PB_O(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出
#define PB_I(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入 #define PC_O(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出
#define PC_I(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入 #define PD_O(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出
#define PD_I(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入 #define PE_O(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出
#define PE_I(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入#define PF_O(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出
#define PF_I(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入#define PG_O(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出
#define PG_I(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入#define PH_O(n) BIT_ADDR(GPIOH_ODR_Addr,n) //输出
#define PH_I(n) BIT_ADDR(GPIOH_IDR_Addr,n) //输入#define PI_O(n) BIT_ADDR(GPIOI_ODR_Addr,n) //输出
#define PI_I(n) BIT_ADDR(GPIOI_IDR_Addr,n) //输入void PA_BUS_O(unsigned int num);
unsigned int PA_BUS_I(void);void PB_BUS_O(unsigned int num);
unsigned int PB_BUS_I(void);void PC_BUS_O(unsigned int num);
unsigned int PC_BUS_I(void);void PD_BUS_O(unsigned int num);
unsigned int PD_BUS_I(void);void PE_BUS_O(unsigned int num);
unsigned int PE_BUS_I(void);void PF_BUS_O(unsigned int num);
unsigned int PF_BUS_I(void);void PG_BUS_O(unsigned int num);
unsigned int PG_BUS_I(void);void PH_BUS_O(unsigned int num);
unsigned int PH_BUS_I(void);void PI_BUS_O(unsigned int num);
unsigned int PI_BUS_I(void);#endif
#include "GPIO.h"void PA_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PA_O(i)=(num>>i)&0x0001;}
}
unsigned int PA_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PA_I(i)<<i)&0xFFFF;}return num;
}void PB_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PB_O(i)=(num>>i)&0x0001;}
}
unsigned int PB_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PB_I(i)<<i)&0xFFFF;}return num;
}void PC_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PC_O(i)=(num>>i)&0x0001;}
}
unsigned int PC_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PC_I(i)<<i)&0xFFFF;}return num;
}void PD_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PD_O(i)=(num>>i)&0x0001;}
}
unsigned int PD_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PD_I(i)<<i)&0xFFFF;}return num;
}void PE_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PE_O(i)=(num>>i)&0x0001;}
}
unsigned int PE_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PE_I(i)<<i)&0xFFFF;}return num;
}void PF_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PF_O(i)=(num>>i)&0x0001;}
}
unsigned int PF_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PF_I(i)<<i)&0xFFFF;}return num;
}void PG_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PG_O(i)=(num>>i)&0x0001;}
}
unsigned int PG_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PG_I(i)<<i)&0xFFFF;}return num;
}void PH_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PH_O(i)=(num>>i)&0x0001;}
}
unsigned int PH_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PH_I(i)<<i)&0xFFFF;}return num;
}void PI_BUS_O(unsigned int num) //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PI_O(i)=(num>>i)&0x0001;}
}
unsigned int PI_BUS_I(void) //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PI_I(i)<<i)&0xFFFF;}return num;
}
二、如何判断MCU的外设是否支持位带
根据《ARM Cortex-M3与Cortex-M4权威指南(第3版)》中第6章第7节描述

也就是说 要实现对GPIO的位带操作 必须保证GPIO位于外设区域的第一个1MB中
第一个1MB应该是0x4010 0000之前 位带不是直接操作地址 而是操作地址映射 地址映射被操作以后 MCU自动会修改对应寄存器的值
位带区只有1MB 所以只能改0x4000 0000 - 0x400F FFFF的寄存器
像F4系列 GPIO的首地址为0x4002 0000 就可以用位带来更改
STM32L476的GPIO就不行:

AHB2的都不能用位带
ABP 还有AHB1都可以用

但是L476的寄存器里面 GPIO和ADC都是AHB2
相关文章:
基于Acconeer的A121-60GHz毫米波雷达传感器SDK移植及测距示例(STM32L496为例)
基于Acconeer的A121-60GHz毫米波雷达传感器SDK移植及测距示例(STM32L496为例) 工程: Keil工程资源 参考资料: A121 datasheet 1.3 A121 HAL Software Integration User Guide A121 STM32CubeIDE User Guide 官方参考示例工程&a…...
flink1.10袋鼠云 迁移 flink1.15原生环境 事项汇总
表DDL(平台自动生成)修改适配 1 DDL语法不通用 (袋鼠云DDL中支持给别名 DDL采用数据中台生成的模板,并把老版本DDL中的配置通过到相应参数中) 2 袋鼠云DDL支持给别名 sql中字段和DDL中字段不一致. 两种解决方案: 1 FlinkSQL别名语法和袋鼠云略不同 袋鼠云DDL: parseJson(parseJ…...
鸿蒙:Harmony开发基础知识详解
一.概述 工欲善其事,必先利其器。 上一篇博文实现了一个"Hello Harmony"的Demo,今天这篇博文就以"Hello Harmony" 为例,以官网开发文档为依据,从鸿蒙开发主要的几个方面入手,详细了解一下鸿蒙开…...
java_函数式接口
文章目录 一、什么是函数式接口二、四大核心函数式接口三、使用举例 一、什么是函数式接口 如果一个接口只有一个抽象方法,那么该接口就是一个函数式接口函数式接口的实例可以通过 lambda 表达式、方法引用或者构造方法引用来创建如果我们在某个接口上声明了 Funct…...
解决selenium访问网页中多个iframe,导致无法锁定元素的问题
解决方法 获取全部的iframe列表调试获取目标iframe使用:browser.switch_to.frame(目标iframe)退回到原有的状态:browser.switch_to.default_content() # 进入另一个iframe browser_iframe_list browser.find_elements(By.CSS_SELECTOR, "iframe&…...
MySQL大表设计
存储大规模数据集需要仔细设计数据库模式和索引,以便能够高效地支持各种查询操作。在面对数亿条数据,每条数据包含数百个字段的情况下,以下是我能想到的在设计数据库的时候需要注意的内容,不足之处欢迎各位在评论区批评指正&#…...
6.基于蜻蜓优化算法 (DA)优化的VMD参数(DA-VMD)
代码原理 基于蜻蜓优化算法 (Dragonfly Algorithm, DA) 优化的 VMD 参数(DA-VMD)是指使用蜻蜓优化算法对 VMD 方法中的参数进行自动调优和优化。 VMD(Variational Mode Decomposition)是一种信号分解方法,用于将复杂…...
OpenCV [c++](图像处理基础示例小程序汇总)
OpenCV [c++](图像处理基础示例小程序汇总) 推荐 原创 NCUTer 2023-04-04 14:18:49 文章标签 Image 图像处理 文章分类 计算机视觉 人工智能 在51CTO的第一篇博文 阅读数1467 一、图像读取与显示 #include<opencv2/opencv.hpp> #include<iostream>using…...
集成多元算法,打造高效字面文本相似度计算与匹配搜索解决方案,助力文本匹配冷启动[BM25、词向量、SimHash、Tfidf、SequenceMatcher]
搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术…...
Qt实现图片旋转的几种方式(全)
目录 一、用手搓(QPainter) 二、使用 QGraphicsView 和 QGraphicsPixmapItem 三、使用 QTransform 实现图像旋转 四、利用 OpenGL 实现旋转图像的效果有几种不同的方法,其中常见的包括: 手动旋转绘制: 使用 QPaint…...
常见面试题-Redis持久化策略
谈谈Redis 的持久化策略? 参考文章: Redis 持久化机制演进与百度智能云的实践 Redis的确是将数据存储在内存的,但是也会有相关的持久化机制将内存持久化备份到磁盘,以便于重启时数据能够重新恢复到内存中,避免数据丢…...
一文搞懂什么是 GNU/Linux 操作系统
Author:rab 目录 前言一、UNIX二、Linux三、GNU 前言 你是否经常看见或听说过这么一句话:这是一个类 Unix 的 GNU/Linux 操作系统,你是怎么理解这句话的呢?想要搞懂这句话的含义,你需要了解以下三点基本常识。 一、U…...
sql注入 [极客大挑战 2019]LoveSQL 1
打开题目 几次尝试,发现输1 1",页面都会回显NO,Wrong username password!!! 只有输入1,页面报错,说明是单引号的字符型注入 那我们万能密码试试能不能登录 1 or 11 # 成功登录 得到账号…...
验证码 | 可视化一键管控各场景下的风险数据
目录 查看今日验证数据 查看未来趋势数据 验证码作为人机交互界面经常出现的关键要素,是身份核验、防范风险、数据反爬的重要组成部分,广泛应用网站、App上,在注册、登录、交易、交互等各类场景中发挥着巨大作用,具有真人识别、身…...
问题解决:Ubuntu18.04下nvcc -V指令可用,/usr/local/下却没有cuda文件夹,原因分析及卸载方法
问题描述 今天要运行一个程序,需要CUDA版本高于10.0,我的电脑无法运行,于是开始检查 首先使用nvidia-smi与nvcc -V指令 能够看出来,当前显卡驱动适合的CUDA版本为12.1,而本机安装的版本是9.1.85,那么就需…...
uniapp+vue3使用pinia,安卓端报错白屏
报错内容: reportJSException >>>> exception function:createInstanceContext, exception:white screen cause create instanceContext failed,check js stack ->at useStore2 (app-service.js:1487:15)at (app-service.js:1714:17)at (app-serv…...
OpenCV图像处理、计算机视觉实战应用
OpenCV图像处理、计算机视觉实战应用 专栏简介一、基于差异模型模板匹配缺陷检测二、基于NCC多角度多目标匹配三、基于zxing多二维码识别四、基于tesseract OCR字符识别 专栏简介 基于OpenCV C分享一些图像处理、计算机视觉实战项目。不定期持续更新,干货满满&…...
MySQL 事务的底层原理和 MVCC(一)
在事务的实现机制上,MySQL 采用的是 WAL(Write-ahead logging,预写式日志)机制来实现的。 在使用 WAL 的系统中,所有的修改都先被写入到日志中,然后再被应用到系统中。通常包含 redo 和 undo 两部分信息。 …...
vue3中使用全局自定义指令和组件自定义指令
这篇文章会教大家如何实现全局自定义指令和组件自定义指令 📓全局自定义指令和组件自定义指令的区别,除了写法不同和作用不同,其他的包括生命周期的使用方法都是一致的,全局自定义指令在main.ts中注册后整个项目都可以使用&#x…...
JVM 堆外内存详解
Java 进程内存占用除了JVM 运行时数据区,还有直接内存(Direct Memory)区域及 JVM 程序自身也会占用内存 直接内存(Direct Memory)区域:直接内存通过使用Native堆外内存来存储数据,这意味着数据…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...
[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...
