层次分析法--可以帮助你做决策的简单算法
作用
层次分析法是一个多指标的评价算法,主要用来在做决策时,给目标的多个影响因子做权重评分。特别是那些需要主观决策的、或者需要用经验判断的决策方案,例如:
- 买房子(主观决策)
- 选择旅游地(主观决策)
- 给员工进行绩效评估(经验判断)
- 选择开店地址(经验判断)
实现步骤
构建层次评价模型
一般可以分为三个层次:目标层、准则层和方案层。如图,目标层:最优旅游地选择;准则层:景色、费用、居住、饮食、旅途;方案层:西安、云南、西藏、青海。

构造判断矩阵
构造判断矩阵就是将准则层各要素之间两两相互比较,确定各要素对目标层的重要程度(权重)。

准则层A构建如下:

准则层A各要素必须满足如下条件:即各要素必须大于0;对角线必须等于1;对角线对称的元素互为倒数。

标度值的大小如图所示方法进行配置

层次单排序与一致性检验
层次单排序就是根据我们构成的判断矩阵,求解各个指标的权重。

计算权重有两种方法:方根法、和法。
计算权重
方根法
1、通过计算每行乘积的m次方,得到m维向量。

示例中的计算如图

2、将向量标准化,得到权重

计算示例的权重如图

和法
1、先将矩阵的每列进行标准化
2、将标准化后的各元素按行求和
3、将求和结果进行标准化

求解最大特征根λmax与CI值
以上,求得权重矩阵后,可以计算最大特征根,其公式为:

其中n为维度数,例如构建的判断矩阵为:景色、费用、居住、饮食、旅途时,n=5;
AW为:判断矩阵*标准化后的权重,然后按按行的累加值。
即判断矩阵A为:

标准化后权重W为:

其中A*W为:

AW:

λmax:
AW1/W1+AW2/W2+AW3/W3+···+AWn/Wn=x

最大特征值λmax=x/矩阵阶数=5.416
最大特征值λmax求解出来后,C.I值就好算多了,
根据C.I值公式,λmax=5.416,n=5,代入可得C.I值=0.1042

求解CR值,判断一致性
一致性校验目的是确定构建的判断矩阵是否有逻辑问题。例如,如果a相当于b为3,a相当于c为1/3,在判断b相当于c时,理应c比b重要。
RI值通过查表可以得知,这个是模拟 1000 次得到的随机一致性指标 R.I.:

而我们的矩阵是5阶(准则层因子个数),矩阵阶数为5时对应的RI值为1.12,代入公式,可以得到C.R.值为 0.1042 / 1.12 = 0.093。

所以 C.R.=0.093

层次总排序与一致性检验
层次总排序,其实就是通过类型层次单排序的方法来给方案打分。即上一步的层次单排序通过判断矩阵计算出了景色、费用、居住、饮食和旅途的权重。现在如果想要知道目标地的权重,那就再构建一个判断矩阵,利用层次单排序计算目标地点的权重,即目标方案的分数。
层次单排序是对一个目标下的多个影响因子,计算各个因子的权重,例如下图中的Z和A1、A2、A3、A4和A5。或者将A1(景色)作为目标,B1、B2和B3作为影响因子,计算B1、B2和B3的权重,即苏杭、北戴河和桂林对目标景色的重要性。

具体做法是这样的。根据上一步算出来的各个因素的权重,确定A1~A5的权重为

现在我想计算方案B1苏杭的权重,那么我们就要重复上个步骤的层次单排序的方法,首先构建一个判断矩阵

依此类推,上述步骤循环5次,就能得到苏杭、北戴河、桂林在景色上的得分矩阵A1,在费用上的得分矩阵A2,在居住上的得分矩阵A3,在饮食上的得分矩阵A4,在旅途上的得分矩阵A5:

以上的判断矩阵全部需要做一致性校验。
通过判断矩阵再计算苏杭、北戴河、桂林在景色、费用等因素上的权重。

对于方案B1(苏杭),它的总得分为:
苏杭在景色上的得分*景色的权重+苏杭在费用上的得分*费用的权重+苏杭在居住上的得分*居住的权重+苏杭在饮食上的得分*饮食的权重+苏杭在旅途上的得分*旅途的权重=0.5954*0.3104+0.819*0.0591+0.4286*0.1157+0.6337*0.4716+0.1667*0.0432=0.5889
以此类推,方案B2(北戴河)为
0.2764*0.3104+0.2363*0.0591+0.4286*0.1157+0.1919*0.4716+0.1667*0.0432=0.2471
方案B3(桂林):
0.1283*0.3104+0.6817*0.0591+0.1429*0.1157+0.1744*0.4716+0.6667*0.0432=0.2077
因此苏杭得分最高,选择去苏杭。
总结
层次分析法的核心其实就是层次单排序。层次单排序是对一个目标下的多个影响因子,计算各个因子对于该目标的权重。利用层次单排序我们就能在一个树型结构的层次评价模型里,由最上层的目标层层递进向下,最终得到树的叶子节点的权重,即我们想要得到的各个方案的权重。
当我们把一个树模型上的所有节点的得分(可以理解为对上一层的权重)都计算出来之后,最终的方案的权重也就出来了。
相关文章:
层次分析法--可以帮助你做决策的简单算法
作用 层次分析法是一个多指标的评价算法,主要用来在做决策时,给目标的多个影响因子做权重评分。特别是那些需要主观决策的、或者需要用经验判断的决策方案,例如: 买房子(主观决策)选择旅游地(…...
docker启动链接sqlservr的镜像时报SSl错误
本次部署中遇到了老项目中的 net core 5.0 docker 镜像访问sql server 出现SSL Handshake failed with OpenSSL error - SSL_ERROR_SSL.问题 Microsoft.Data.SqlClient.SqlException (0x80131904): A connection was successfully established with the server, but then an e…...
力扣:175. 组合两个表(Python3)
题目: 表: Person ---------------------- | 列名 | 类型 | ---------------------- | PersonId | int | | FirstName | varchar | | LastName | varchar | ---------------------- personId 是该表的主键(具有唯一值的列&#…...
【libGDX】使用Mesh绘制矩形
1 前言 使用Mesh绘制三角形 中介绍了绘制三角形的方法,本文将介绍绘制正方形的方法。 libGDX 以点、线段、三角形为图元,没有提供绘制矩形内部的接口。要绘制矩形内部,必须通过三角形拼接而成,如下图,是通过GL_TRIANGL…...
X2Keyarch迁移工具实战 | 将CentOS高效迁移至浪潮云峦操作系统KeyarchOS
X2Keyarch迁移工具实战 | 将CentOS高效迁移至浪潮云峦操作系统KeyarchOS 1. 搭建仿真线上业务环境2. 安装KeyarchOS操作系统和X2Keyarch迁移工具3. 将CentOS系统业务迁移至KeyarchOS系统 浪潮信息云峦操作系统KeyarchOS基于Linux Kernel、OpenAnolis等开源技术自主研发的一款服…...
基于VM虚拟机下Ubuntu18.04系统,Hadoop的安装与详细配置
参考博客: https://blog.csdn.net/duchenlong/article/details/114597944 与上面这个博客几乎差不多,就是java环境配置以及后面的hadoop的hdfs-site.xml文件有一些不同的地方。 准备工作 1.更新 # 更新 sudo apt update sudo apt upgrade2.关闭防火…...
【图像分类】基于深度学习的垃圾分类系统的设计与实现(ResNet网络,附代码和数据集)
写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信…...
MFS分布式文件系统
目录 集群部署 Master Servers Chunkservers 编辑Clients Storage Classes LABEL mfs高可用 pacemaker高可用 编辑ISCSI 添加集群资源 主机 ip 角色 server1 192.168.81.11 Master Servers server2 192.168.81.12 Chunkservers server3 192.168.81.13 Chunkserver…...
Hadoop -hdfs的读写请求
1、HDFS写数据(宏观): 1、首先,客户端发送一个写数据的请求,通过rpc与NN建立连接,NN会做一些简单的校验,文件是否存在,是否有空间存储数据等。 2、NN就会将校验的结果发送给客户端…...
【c++Leetcode】206. Reverse Linked List
问题入口 time complexity: O(n), space complexity:O(1) ListNode* reverseList(ListNode* head) {ListNode* prev nullptr;ListNode* curr head;while(curr){ListNode* forward curr->next;curr->next prev;prev curr;curr forward;}return prev; } time comp…...
[项目管理-33/创业之路-87/管理者与领导者-127]:如何提升自己项目管理的能力和水平
目录 前言: 一、项目经理的角色定位 1.1 项目经理的职责 1.2 不同矩阵类型的项目,项目经理的职责 1.3 项目经理的角色定位 1.4 项目经理的发展路径 二、项目经理项目理论和知识结构 三、软件项目经理在计算机水平的提升 四、项目经理业务知识的…...
记录一次因内存不足而导致hiveserver2和namenode进程宕机的排查
背景 最近发现集群主节点总有进程宕机,定位了大半天才找到原因,分享一下 排查过程 查询hiveserver2和namenode日志,都是正常的,突然日志就不记录了,直到我重启之后又恢复工作了。 排查各种日志都是正常的࿰…...
c# 基础语法
c# 程序结构 using System.Collections.Generic; namespace demo1; //一个命名空间可以包含多个类 using System.IO; using System.Drawing;class proj {/// <summary>/// c#是微软开发的,基于c和c的一种面象对象编程语言,用于快速开发windows桌…...
【译】什么时候使用 Spring 6 JdbcClient
原文地址:Spring 6 JdbcClient: When and How to Use it? 一、前言 自 Spring 6.1 起,JdbcClient 为 JDBC 查询和更新操作提供了统一的客户端 API,从而提供了更流畅、更简化的交互模型。本教程演示了如何在各种场景中使用 JdbcClient。 二…...
VR全景:赋能城市园区建设,打造3DVR城市名片
近年来,很多城市都在大力发展数字化经济建设,以VR全景技术赋能现代化城市和园区建设,为城市园区展示带来了全新的可能性。借助3D、VR技术把现实城市和园区搬到互联网上进行全方位展示,将城市园区的形象、景观、规划布局等1&#x…...
孟德尔随机化写作技巧mr
...
社会媒体营销提问常用的ChatGPT通用提示词模板
如何制定有效的社会媒体营销策略? 如何选择适合的社会媒体平台进行营销? 如何创造有吸引力的社会媒体内容,提高用户参与度和分享率? 如何运用社交媒体广告来增加品牌曝光和用户转化? 如何建立和维护社交媒体账号和…...
智慧储能边缘计算网关应用,提升能源效率
智慧储能通过边缘计算网关物联网技术来实现对储能电池等设备的在线监控和远程管理。边缘计算网关可以将储能数据转化为可用的信息,并传输到储能系统中,为储能管理提供优化与调度等数据支持。 边缘计算网关在智慧储能系统中起到了关键的作用。IR4000边缘计…...
利用 Apache Ranger 管理 Amazon EMR 中的数据权限
需求背景简介 系统安全通常包括两个核心主题:身份验证和授权。一个解决“用户是谁”的问题,另一个解决“用户允许执行什么操作”的问题。在大数据领域,Apache Ranger 是最受欢迎的授权选择之一,它支持所有主流大数据组件ÿ…...
HarmonyOS(三)—— 应用程序入口—UIAbility
前言 学习过android的同学都是知道Activity,Activity是Android组件中最基本也是最为常见用的四大组件之一,用户可以用来交互为了完成某项任务。 Activity中所有操作都与用户密切相关,是一个负责与用户交互的组件,可以通过setCon…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
ubuntu22.04有线网络无法连接,图标也没了
今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
对象回调初步研究
_OBJECT_TYPE结构分析 在介绍什么是对象回调前,首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例,用_OBJECT_TYPE这个结构来解析它,0x80处就是今天要介绍的回调链表,但是先不着急,先把目光…...
WinUI3开发_使用mica效果
简介 Mica(云母)是Windows10/11上的一种现代化效果,是Windows10/11上所使用的Fluent Design(设计语言)里的一个效果,Windows10/11上所使用的Fluent Design皆旨在于打造一个人类、通用和真正感觉与 Windows 一样的设计。 WinUI3就是Windows10/11上的一个…...
