最优传输问题和Sinkhorn
最优传输问题
假设有M堆土,每堆土的大小是ama_mam,有N个坑,每个坑的大小是bnb_nbn,把单位土从土堆m运送到坑n的代价是c(m,n)c(m,n)c(m,n),如何找到一种运输方法填满坑,并且代价最小,这就是最优传输问题(optimal transport (OT) problem)。
假设有两个概率分布,类似上面的情况,如何以最小的成本将一种概率分布转换为另一种概率分布,这也是最优传输问题。这个最小的成本可以作为度量两个概率分布的距离,被称为Wasserstein距离,或者推土机距离(Earth Mover’s Distance(EMD))。
在离散的情况下,假设r,c\mathbf r, \mathbf cr,c是两个概率向量,也就是所有元素求和为1的向量。1d\mathbf 1_d1d是维度为ddd所有元素为1的向量。
运输多面体(transport polytope )U(r,c)U(\mathbf r,\mathbf c)U(r,c)被定义为:
U(r,c):={P∈R+d×d∣P1d=r,P⊤1d=c}U(\mathbf r,\mathbf c) := \{ \mathbf P \in \mathbb R^{d \times d}_+ | \mathbf P \mathbf 1_d = \mathbf r, \mathbf P^\top \mathbf 1_d = \mathbf c\} U(r,c):={P∈R+d×d∣P1d=r,P⊤1d=c}
给定一个费用矩阵M∈Rd×d\mathbf M \in \mathbb R^{d \times d}M∈Rd×d,r\mathbf rr到c\mathbf cc的最优传输距离被定义为:
dM(r,c):=minP∈U(r,c)<P,M>=∑i=1d∑j=1dPijMijd_{\mathbf M}(\mathbf r, \mathbf c) := \min_{\mathbf P \in U(\mathbf r,\mathbf c)}<\mathbf P, \mathbf M> = \sum_{i=1}^d \sum_{j=1}^d \mathbf{P}_{ij} \mathbf{M}_{ij} dM(r,c):=P∈U(r,c)min<P,M>=i=1∑dj=1∑dPijMij对于一般的矩阵M\mathbf MM,目前提出的最佳算法在最坏情况下的复杂度是 O(d3logd)O(d^3 \log d)O(d3logd)。在实践中复杂度也被证明是超立方的。
Sinkhorn距离
为上面的最优传输问题加上熵正则化:
dMλ(r,c)=minP∈U(r,c)∑i,jPijMij−1λh(P)h(P)=−∑i,jPijlogPijd_\mathbf{M}^\lambda(\mathbf{r}, \mathbf{c}) = \min_{\mathbf P\in U(\mathbf{r}, \mathbf{c})}\, \sum_{i,j} \mathbf P_{ij} \mathbf M_{ij} - \frac{1}{\lambda}h(\mathbf P)\\ h(\mathbf P) = -\sum_{i,j}\mathbf P_{ij}\log \mathbf P_{ij} dMλ(r,c)=P∈U(r,c)mini,j∑PijMij−λ1h(P)h(P)=−i,j∑PijlogPij dMλ(r,c)d_\mathbf{M}^\lambda(\mathbf{r}, \mathbf{c})dMλ(r,c)被称为dual-Sinkhorn divergence,h(P)h(\mathbf P)h(P)是香浓熵(Shannon entropy)。
当λ→0\lambda\rightarrow0λ→0时,上面问题的解是Pij=ricj\mathbf P_{ij}=\mathbf r_i \mathbf c_jPij=ricj;当λ→∞\lambda\rightarrow\inftyλ→∞时,回到了原始的最优输运问题。
香浓熵要求分配更加均匀, 参数λ\lambdaλ权衡了按花费分配和平分。
加上熵正则的最优传输问题变得更好计算了,因为解变得平滑。
Sinkhorn定理被用来寻找熵正则化最优输运问题的解。
参考资料
Wiki Sinkhorn’s theorem
Notes on Optimal Transport
http://alexhwilliams.info/itsneuronalblog/2020/10/09/optimal-transport/
https://zipjiang.github.io/2020/11/23/sinkhorn’s-theorem-,-sinkhorn-algorithm-and-applications.html
相关文章:
最优传输问题和Sinkhorn
最优传输问题 假设有M堆土,每堆土的大小是ama_mam,有N个坑,每个坑的大小是bnb_nbn,把单位土从土堆m运送到坑n的代价是c(m,n)c(m,n)c(m,n),如何找到一种运输方法填满坑,并且代价最小,这就是…...
Netty核心组件EventLoop源码解析
源码解析目标 分析最核心组件EventLoop在Netty运行过程中所参与的事情,以及具体实现 源码解析 依然用netty包example下Echo目录下的案例代码,单我们写一个NettyServer时候,第一句话就是 EventLoopGroup bossGroup new NioEventLoopGroup(…...
排障命令-汇总
目录 日志查询 1. grep 2. zgrep cpu 1. top 内存 1. free tcp相关 1. netstat 2. ulimit 3. lsof jvm常用 1. jps 2. jinfo 3. jstack 4. jmap 5. jstat 进制转换 1. 十进制转16进制 日志查询 1. grep 定义:(global regular expression) 命令用于查…...
python+pytest接口自动化(4)-requests发送get请求
python中用于请求http接口的有自带的urllib和第三方库requests,但 urllib 写法稍微有点繁琐,所以在进行接口自动化测试过程中,一般使用更为简洁且功能强大的 requests 库。下面我们使用 requests 库发送get请求。requests库简介requests 库中…...
开源电子书工具Calibre 6.3 发布
Calibre 开源项目是 Calibre 官方出的电子书管理工具。它可以查看,转换,编辑和分类所有主流格式的电子书。Calibre 是个跨平台软件,可以在 Linux、Windows 和 macOS 上运行。Calibre 6.3 正式发布,此次更新内容如下:新…...
C++ STL:适配器 Adapter
文章目录1、容器适配器1.1、stack1.2、queue1.3、priority_queue2、迭代器适配器2.1、插入迭代器2.2、反向迭代器2.3、流迭代器3、函数适配器3.1、* bindbind 使用方法bind 简化原理3.2、mem_fn适配器就是接口,对容器、迭代器、算法进行包装,但其实质还是…...
防抖和节流
防抖和节流的区别?防抖:触发高频事件后n 秒内 函数只会执行一次,如果n秒内 高频事件在在次触发,则会重新计算节流:高频事件触发,但在n 秒内 只会执行一次,所以节流会稀释函数的执行频率下面就是…...
vue3 微信扫码登录及获取个人信息实现的三种方法
一、流程: 微信提供的扫码方式有两种,分别是: 跳转二维码扫描页面 内嵌式二维码根据文档我们可以知道关于扫码授权的模式整体流程为: 1. 第三方发起微信授权登录请求,微信用户允许授权第三方应用后,微信会拉起应用或重定向到第三方网站&…...
Java8 新特性强大的Stream API
一、Stream API 说明 Java8中有两大最为重要的改变。第一个是 Lambda 表达式;另外一个则是 Stream API。 Stream API ( java.util.stream) 把真正的函数式编程风格引入到Java中。这是目前为止对Java类库最好的补充,因为Stream API可以极大提供Ja…...
day22_IO
今日内容 上课同步视频:CuteN饕餮的个人空间_哔哩哔哩_bilibili 同步笔记沐沐霸的博客_CSDN博客-Java2301 零、 复习昨日 一、作业 二、缓冲流 三、字符流 四、缓冲字符流 五、匿名内部类 零、 复习昨日 File: 通过路径代表一个文件或目录 方法: 创建型,查找类,判断类,其他 IO …...
第三十八章 linux-并发解决方法二(信号量)
第三十八章 linux-并发解决方法二(信号量) 文章目录第三十八章 linux-并发解决方法二(信号量)信号量的定义DOWN操作UP操作相对于自旋锁,信号量的最大特点是允许调用它的线程进入睡眠状态这意味着试图获得某一信号的进程…...
数据结构-考研难点代码突破(C++实现树型查找 - B树插入与遍历,B+树基本概念)
数据结构(C)[B树(B-树)插入与中序遍历,效率分析]、B树、B*树、B树系列应用 文章目录1. B树B树的插入与删除流程2. B树(MySQL)3. B树与B树对比4. C实现B树插入,中序遍历1. B树 B树类…...
Python可视化界面编程入门
Python可视化界面编程入门具体实现代码如所示: (1)普通可视化界面编程代码入门: import sys from PyQt5.QtWidgets import QWidget,QApplication #导入两个类来进行程序界面编程if __name__"__main__":#创建一个Appl…...
基于Java+SpringBoot+Vue前后端分离书店购书系统设计与实现
博主介绍:✌全网粉丝3W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战✌ 博主作品:《微服务实战》专栏是本人的实战经验总结,《Spring家族及…...
Android:截屏/视频截图
需求描述 实现截取Android应用当前界面的功能,需包含界面中视频(此博客的参考代码以存储在设备本地的视频为例,未检验在线视频的情况)当前的播放帧截图。 调研准备 首先应用需要获取设备存储的读写权限,需要在Andro…...
leecode-C语言实现-28. 找出字符串中第一个匹配项的下标
一、题目给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标(下标从 0 开始)。如果 needle 不是 haystack 的一部分,则返回 -1 。示例 1:输入:haystack …...
使用 Postman 实现 API 自动化测试
目录:导读 背景介绍 名词解析 使用说明 执行 API 测试 集成 CI 实现 API 自动化测试 写在最后 背景介绍 相信大部分开发人员和测试人员对 postman 都十分熟悉,对于开发人员和测试人员而言,使用 postman 来编写和保存测试用例会是一种比…...
k8s环境jenkins发布vue项目指定nodejs版本
k8s环境jenkins发布vue项目指定nodejs版本1、背景2、分析3、解决方法3.1、 找到配置镜像位置3.2、 制作新镜像3.3、 推送镜像到私有仓库3.4、 修改配置文件1、背景 发布一个前端项目,它需要nodejs 16.9.0版本支持,而kubesphere 3.2.0集成的jenkins 的镜…...
我应该把毕业设计做到什么程度才能过关?
本篇博客包含了狗哥多年职业生涯对于软件项目的一丢丢理解,也讲述了对于大学生毕业设计的一些理解。如果你还是懵懵懂懂就要离开学校了,被老师告知不得不做出一套毕业设计的时候,希望你可以看到这篇博客,让你有点头绪,…...
力扣-合作过至少三次的演员和导演
大家好,我是空空star,本篇带大家了解一道简单的力扣sql练习题。 文章目录前言一、题目:1050. 合作过至少三次的演员和导演二、解题1.正确示范①提交SQL运行结果2.正确示范②提交SQL运行结果3.正确示范③提交SQL运行结果4.正确示范④提交SQL运…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
