【Python】Numpy--np.linalg.eig()求对称矩阵的特征值和特征向量
【Python】Numpy–np.linalg.eig()求对称矩阵的特征值和特征向量
文章目录
- 【Python】Numpy--np.linalg.eig()求对称矩阵的特征值和特征向量
- 1. 介绍
- 2. API
- 3. 代码示例
1. 介绍
特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。
- 需要注意:只有对可对角化矩阵才可以施以特征分解。
- 当方阵的行列式不为0时,它才可以特征分解。
- 对称矩阵的行列式不为0。故实对称矩阵 A 可被分解成:
A=QΛQTA = QΛ Q^T A=QΛQTΛ是特征值构成的对角矩阵,Q为特征向量构成的矩阵(每列为一个特征向量)。
2. API
Numpy提供了丰富的API:
- 求矩阵的特征值和特征向量;
- 求矩阵的行列式
- 求方阵的逆
import numpy as np
# 计算特征值和特征向量
x, V = np.linalg.eig(A)# 计算矩阵的行列式
det = np.linalg.det(A)# 计算方阵的逆
A_inv = np.linalg.inv(A)
3. 代码示例
import numpy as npA = np.array([[0, 1, 2, 3],[1, 0, 3, 1],[2, 3, 0, 2],[3, 1, 2, 0]])x, V = np.linalg.eig(A)V_inv = np.linalg.inv(V)print('A的行列式', np.linalg.det(A))# 注意这里:且不可使用‘*’做乘法(因为*优先使用点乘,点乘不成立,才会进行矩阵乘法)
B = np.matmul(np.matmul(V, np.diag(x)), (V_inv))print('特征值x: \n', x)print('特征向量V: \n', V)print('V_T: \n', V.T)print('V_inv: \n', V_inv)print('B: \n', B)-----------------------------输出-----------------------------------
A的行列式 9.000000000000009
特征值x:[ 6.05572176 0.15432761 -3. -3.21004937]
特征向量V:[[-5.03020107e-01 -4.75446017e-01 -7.07106781e-01 -1.44643895e-01][-4.38300211e-01 6.51958757e-01 -2.36695808e-17 -6.18742842e-01][-5.49394638e-01 3.50502424e-01 -1.50578103e-16 7.58494287e-01][-5.03020107e-01 -4.75446017e-01 7.07106781e-01 -1.44643895e-01]]
V_T:[[-5.03020107e-01 -4.38300211e-01 -5.49394638e-01 -5.03020107e-01][-4.75446017e-01 6.51958757e-01 3.50502424e-01 -4.75446017e-01][-7.07106781e-01 -2.36695808e-17 -1.50578103e-16 7.07106781e-01][-1.44643895e-01 -6.18742842e-01 7.58494287e-01 -1.44643895e-01]]
V_inv:[[-5.03020107e-01 -4.38300211e-01 -5.49394638e-01 -5.03020107e-01][-4.75446017e-01 6.51958757e-01 3.50502424e-01 -4.75446017e-01][-7.07106781e-01 -8.99464510e-16 8.86986655e-16 7.07106781e-01][-1.44643895e-01 -6.18742842e-01 7.58494287e-01 -1.44643895e-01]]
B:
[[ 1.71102595e-15 1.00000000e+00 2.00000000e+00 3.00000000e+00][ 1.00000000e+00 9.30160211e-16 3.00000000e+00 1.00000000e+00][ 2.00000000e+00 3.00000000e+00 -2.20312258e-16 2.00000000e+00][ 3.00000000e+00 1.00000000e+00 2.00000000e+00 1.88043220e-15]]
相关文章:
【Python】Numpy--np.linalg.eig()求对称矩阵的特征值和特征向量
【Python】Numpy–np.linalg.eig()求对称矩阵的特征值和特征向量 文章目录【Python】Numpy--np.linalg.eig()求对称矩阵的特征值和特征向量1. 介绍2. API3. 代码示例1. 介绍 特征分解(Eigendecomposition),又称谱分解(Spectral d…...

医疗床头卡(WIFI方案)
一、产品特性 7.5寸墨水屏显示WIFI无线通信,极简部署,远程控制按键及高亮LED指示灯指示800*480点阵屏幕锂电池供电,支持USB充电DIY界面支持文本/条码/二维码/图片超低功耗/超长寿命,一次充电可用一年基于现有Wifi环境,…...

[YOLO] yolo博客笔记汇总(自用
pip下载速度太慢,国内镜像: 国内镜像解决pip下载太慢https://blog.csdn.net/weixin_51995286/article/details/113972534 YOLO v2和V3 关于设置生成anchorbox,Boundingbox边框回归的过程详细解读 YOLO v2和V3 关于设置生成an…...

Linux 常用 API 函数
文章目录1. 系统调用与库函数1.1 什么是系统调用1.2 系统调用的实现1.3 系统调用和库函数的区别2. 虚拟内存空间3. 错误处理函数4. C 库中 IO 函数工作流程5. 文件描述符6. 常用文件 IO 函数6.1 open 函数6.2 close 函数6.3 write 函数6.4 read 函数6.5 lseek 函数7. 文件操作相…...

【转载】bootstrap自定义样式-bootstrap侧边导航栏的实现
bootstrap自带的响应式导航栏是向下滑动的,但是有时满足不了个性化的需求: 侧滑栏使用定位fixed 使用bootstrap响应式使用工具类 visible-sm visible-xs hidden-xs hidden-sm等对不同屏幕适配 侧滑栏的侧滑效果不使用jquery方法来实现,使用的是css3 tr…...

奇瑞x华为纯电智选车来了,新版ADS成本将大幅下降
作者 | 德新 编辑 | 于婷HiEV获悉,问界M5将在4月迎来搭载高阶辅助驾驶的新款,而M9将在今年秋天发布。 奇瑞一侧,华为将与奇瑞首先推出纯电轿车,代号EH3。新车将在奇瑞位于芜湖江北新区的智能网联超级二工厂组装下线。目前超级二工…...

机器学习的特征归一化Normalization
为什么需要做归一化? 为了消除数据特征之间的量纲影响,就需要对特征进行归一化处理,使得不同指标之间具有可比性。对特征归一化可以将所有特征都统一到一个大致相同的数值区间内。 为了后⾯数据处理的⽅便,归⼀化可以避免⼀些不…...

程序员看过都说好的资源网站,看看你都用过哪些?
程序员必备的相关资源网站一.图片专区1.表情包(1)发表情(2)逗比拯救世界(3)搞怪图片生成(4)哇咔工具2.图标库(1)Font Awesome(2)iconf…...

Win11的两个实用技巧系列之设置系统还原点的方法、安全启动状态开启方法
Win11如何设置系统还原点?Win11设置系统还原点的方法很多用户下载安装win11后应该如何创建还原点呢?现在我通过这篇文章给大家介绍一下Win11如何设置系统还原点?在Windows系统中有一个系统还原功能可以帮助我们在电脑出现问题的时候还原到设置的时间上&…...

【Linux】项目的自动化构建-make/makefile
💣1.背景会不会写makefile,从一个侧面说明了一个人是否具备完成大型工程的能力 一个工程中的源文件不计数,其按类型、功能、模块分别放在若干个目录中,makefile定义了一系列的 规则来指定,哪些文件需要先编译ÿ…...

【Redis学习2】Redis常用数据结构与应用场景
Redis常用数据结构与应用场景 redis中存储数据是以key-value键值对的方式去存储的,其中key为string字符类型,value的数据类型可以是string(字符串)、list(列表)、hash(字典)、set(集合) 、 zset(有序集合)。 这5种数据类型在开发中可以应对大部分场景的…...
踩了大坑:https 证书访问错乱
文章目录一、问题排查及解决问题一:证书加载错乱问题二:DNS 解析污染问题问题三:浏览器校验问题二、终极解决方法2.1 可外网访问域名2.2 只能内网访问域名2.3 内网自动化配置2.4 错误解决一、问题排查及解决 今天遇到这样一个问题࿰…...

大数据技术之Hive(四)分区表和分桶表、文件格式和压缩
一、分区表和分桶表1.1 分区表partitionhive中的分区就是把一张大表的数据按照业务需要分散的存储到多个目录,每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择式选择查询所需要的分区,这样的查询效率辉提高很多。1.1.1 分区表基本语…...

环形缓冲区(c语言)
1、概念介绍 在我们需要处理大量数据的时候,不能存储所有的数据,只能先处理先来的,然后将这个数据释放,再去处理下一个数据。 如果在一个线性的缓冲区中,那些已经被处理的数据的内存就会被浪费掉。因为后面的数据只能…...

创建自助服务知识库的指南
在SaaS领域,自助文档是你可以在客户登录你的网站时为他们提供的最灵活的帮助方式,简单来说,一个自助知识库是一个可以帮助许多客户的文档,拥有出色的自助服务知识库,放在官网或者醒目的地方,借助自助服务知…...

分层测试(1)分层测试是什么?【必备】
1. 什么是分层测试? 分层测试是通过对质量问题分类、分层来保证整体系统质量的测试体系。 模块内通过接口测试保证模块质量,多模块之间通过集成测试保证通信路径和模块间交互质量,整体系统通过端到端用例对核心业务场景进行验证,…...

开源ZYNQ AD9361软件无线电平台
(1) XC7Z020-CLG400 (2) AD9363 (3) 单发单收,工作频率400MHz-2.7GHz (4) 发射带PA,最大输出功率约20dbm (5) 接收带LNA,低…...

第四阶段-12关于Spring Security框架,RBAC,密码加密原则
关于csmall-passport项目 此项目主要用于实现“管理员”账号的后台管理功能,主要实现: 管理员登录添加管理员删除管理员显示管理员列表启用 / 禁用管理员 关于RBAC RBAC:Role-Based Access Control,基于角色的访问控制 在涉及…...
JPA——Date拓展之Calendar
Java Calendar 是时间操作类,Calendar 抽象类定义了足够的方法,在某一特定的瞬间或日历上,提供年、月、日、小时之间的转换提供方法 一、获取具体时间信息 1. 当前时间 获取此刻时间的年月日时分秒 Calendar calendar Calendar.getInstance(); int …...

一文吃透 Spring 中的 AOP 编程
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...