当前位置: 首页 > news >正文

集成学习的两种常见策略:bagging VS. boosting

chatGPT回答,记在这里。

集成学习是一种通过组合多个弱学习器来构建一个更强大的学习器的方法。其中,bagging和boosting是两种常见的集成学习策略。

一、bagging & boosting 简介

  1. Bagging(自助聚集法):
    Bagging是一种并行的集成学习策略,它通过随机有放回地从原始训练集中抽取多个子样本集,并使用这些子样本集来训练多个基学习器。每个基学习器都是独立地训练,并且可以并行地进行。最后,通过对基学习器的预测结果进行投票或平均,来得到集成模型的最终预测结果。
    Bagging的主要思想是通过减少模型的方差来提高整体模型的稳定性和泛化能力。通过随机抽样和并行训练,Bagging能够减少模型对训练数据的过拟合程度,提高模型的鲁棒性。

常见的Bagging算法包括随机森林(Random Forest)和自适应增强(Adaptive Boosting)。

  1. Boosting(提升法):
    Boosting是一种串行的集成学习策略,它通过顺序地训练多个基学习器,每个基学习器都会根据前一个基学习器的表现进行调整。Boosting的核心思想是通过逐步提升模型的性能,将多个弱学习器组合成一个强学习器。
    在Boosting过程中,每个基学习器都会关注前一个基学习器预测错误的样本,尝试对其进行更加准确的预测。通过加权投票或加权平均,将多个基学习器的预测结果进行组合,得到最终的集成模型的预测结果。
    Boosting的主要思想是通过减少模型的偏差来提高整体模型的准确性和泛化能力。通过串行训练和逐步调整,Boosting能够逐渐减少模型在训练数据上的错误率,提高模型的预测能力。

常见的Boosting算法包括AdaBoost、Gradient Boosting和XGBoost等。

总结起来,Bagging和Boosting是两种常见的集成学习策略。Bagging通过并行训练多个基学习器,并对它们的预测结果进行投票或平均来得到最终预测结果;而Boosting通过串行训练多个基学习器,并根据前一个基学习器的表现进行调整,最终将它们的预测结果进行加权组合。这两种策略都能够提高模型的性能和泛化能力,但它们的实现方式和调整方式略有不同。

二、bagging algorithms are robust to variance error, while boosting algorithms are robust to bias error

Bagging算法对方差错误具有鲁棒性,而Boosting算法对偏差错误具有鲁棒性的原因如下:

  1. Bagging对方差错误具有鲁棒性:
    Bagging通过随机有放回地从原始训练集中抽取多个子样本集,并使用这些子样本集来训练多个基学习器。每个基学习器都是独立地训练,并且可以并行地进行。最后,通过对基学习器的预测结果进行投票或平均,来得到集成模型的最终预测结果。
    由于Bagging使用了随机抽样和并行训练的方式,它能够减少模型对训练数据的过拟合程度,从而降低方差错误。通过对多个基学习器的预测结果进行组合,Bagging能够减少个别基学习器的预测误差的影响,提高整体模型的稳定性和泛化能力。

  2. Boosting对偏差错误具有鲁棒性:
    Boosting是一种串行的集成学习策略,它通过顺序地训练多个基学习器,每个基学习器都会根据前一个基学习器的表现进行调整。Boosting的核心思想是通过逐步提升模型的性能,将多个弱学习器组合成一个强学习器。
    在Boosting过程中,每个基学习器都会关注前一个基学习器预测错误的样本,尝试对其进行更加准确的预测。通过加权投票或加权平均,将多个基学习器的预测结果进行组合,得到最终的集成模型的预测结果。
    Boosting能够对偏差错误具有鲁棒性的原因是,每个基学习器都会专注于改善前一个基学习器的错误,从而逐渐减少模型在训练数据上的偏差。通过串行训练和逐步调整,Boosting能够提高模型的准确性和泛化能力,从而降低偏差错误。

总结起来,Bagging算法通过随机抽样和并行训练来减少方差错误,Boosting算法通过串行训练和逐步调整来减少偏差错误。这两种策略都能够提高模型的性能和泛化能力,但它们对不同类型的错误具有不同的鲁棒性。

相关文章:

集成学习的两种常见策略:bagging VS. boosting

chatGPT回答,记在这里。 集成学习是一种通过组合多个弱学习器来构建一个更强大的学习器的方法。其中,bagging和boosting是两种常见的集成学习策略。 一、bagging & boosting 简介 Bagging(自助聚集法): Bagging…...

居家适老化设计第三十四条---卫生间之照明

居家适老化卫生间照明设计需要考虑以下几个方面:1. 光源选择:选择适合老年人眼睛的柔和光源,避免刺眼和眩光的发生。可以选择LED灯具,因为它们具有节能、寿命长和可调光的特点。2. 光线布置:在不同区域设置不同的光线&…...

如何使用Cloudreve将个人电脑打造为私有云盘并实现远程访问

文章目录 1、前言2、本地网站搭建2.1 环境使用2.2 支持组件选择2.3 网页安装2.4 测试和使用2.5 问题解决 3、本地网页发布3.1 cpolar云端设置3.2 cpolar本地设置 4、公网访问测试5、结语 1、前言 云存储概念兴起后,现在市面上也已经有了很多公有云盘。但一段时间后…...

[SaaS] 淘宝AI淘淘秀

AIGC技术在淘淘秀场景的探索与实践关键词:图像类AI创新应用、用户轻松创作、内容分享、结合商家品牌。https://mp.weixin.qq.com/s/-3a3_nKeKGON-9-Prd7JKQ 1.生成模版 利用定制的prompt,生成一些比较好的素材图片案例。 最终的用的是通义万相。 2.仿…...

第二证券:机构密集调研消费电子、半导体产业链

据上海证券报记者核算,近一个月来,共有41家消费电子类公司和92家半导体公司(核算标准:申万职业2021,下同)发布出资者调研纪要。其间,有的公司款待了16个批次估计超200家安排,更有公司…...

app小程序定制的重点|软件定制开发|网站搭建

app小程序定制的重点|软件定制开发|网站搭建 App小程序定制开发是近年来快速发展的一项技术服务,随着移动互联网的普及和用户需求的不断升级,越来越多的企业和个人开始关注和需求定制化的小程序开发。那么,对于app小程序定制开发来说&#xf…...

11-28渗透

用nmap扫描靶机1进行主机发现 已知靶机1的主机在172.16.17.0/24下 扫描结果如下 根据扫描结果看开启的服务怀疑172.16.17.177是靶机1 浏览器访问172.16.17.177页面得到如下 我们知道织梦cms系统默认管理路径是dede,登陆管理后台可以通过地址172.16.17.177/dede/i…...

qt实现一个安卓测试小工具

qt实现一个安卓测试小工具 最终效果:目录结构源码gui.py 主要是按钮,文本控制代码main.py 主要是逻辑代码gui.spec 是打包使用的adb.ui 打包为exe 最终效果: 目录结构 上面2个是打包的生成的不用管 源码 gui.py 主要是按钮,文…...

驾驭未来,智能化管理——汽车ERP系统

在汽车行业竞争日益激烈的今天,如何提高生产效率、优化供应链管理,确保产品质量和客户满意度成为汽车制造企业亟需解决的难题。为解决这一问题,汽车企业资源计划(ERP)系统应运而生。本文将为您介绍汽车ERP系统&#xf…...

flutter开发实战-当前界面无操作60s返回主页实现

flutter开发实战-当前界面无操作60s返回主页实现 当前界面无操作60s返回主页实现,主要是通过Timer来控制,当监听界面是否有pointerDown时候,如果超过60s仍没有操作,则返回主页。 一、Listener Listener是用来用于调用回调以响应…...

绩效考核的基础及基本内容

人力资源是企业的第一资源,员工绩效水平决定着人力资源价值的实现程度,绩效是企业永远的重点,没有绩效,一切无从谈起。很多企业在实施考核时扩大了绩效考核的积极作用,并没有考虑企业对绩效考核负面效应的承载能力&…...

阿坤老师的彩带插花(蓝桥杯)

阿坤老师的彩带插花 问题描述 阿坤老师是个充满创意的手工艺教师,他最近在教学生们制作彩带插花。每束彩带插花由多段彩带组成,每段彩带有左端和右端,左端到右端的长度不一。阿坤老师发现,有些彩带被完全插在了其他彩带之内&…...

系列二十四、Spring设计模式之策略模式

一、前言 对于我们Java开发人员来说,Spring框架的重要性不言而喻,可以说Java领域之所以发展这么壮大,生态这么丰富,功能这么强大,是离不开Spring以及由其衍生出来的各种子模块的,正是由它们共同奠定了JavaE…...

Linux常用命令——basename命令

在线Linux命令查询工具 basename 打印目录或者文件的基本名称 补充说明 basename命令用于打印目录或者文件的基本名称。basename和dirname命令通常用于shell脚本中的命令替换来指定和指定的输入文件名称有所差异的输出文件名称。 语法 basename(选项)(参数)选项 --help&…...

LeetCode17.电话号码的字母组合

写这题的时候没有啥DFS思路&#xff0c;感觉还是DFS没刷明白&#xff0c;还需要多提高 参考链接&#xff1a; 【还得用回溯算法&#xff01;| LeetCode&#xff1a;17.电话号码的字母组合-哔哩哔哩】 https://b23.tv/oTuy71C class Solution {public List<String> lette…...

为Oracle链接服务器使用分布式事务

1 现象 在SQL Server中创建指向Oracle的链接服务器&#xff0c;SQL语句在事务中向链接服务器插入数据。返回链接服务器无法启动分布式事务的报错。 2 解决 在Windows平台下&#xff0c;SQL Server依赖分布式事务协调器&#xff08;MSDTC&#xff09;来使用分布式事务&#xff0…...

代洋集团,引领绿色能源新潮流

代洋集团&#xff0c;引领绿色能源新潮流&#xff0c;成功安装了先进的太阳能电池阵列。这一环保举措&#xff0c;不仅彰显了我们对可持续发展的执着追求&#xff0c;更为整个园区带来了绿色能源的革新。 这个高效的太阳能电池阵列&#xff0c;利用纯净的阳光转化为清洁电力&a…...

LuatOS-SOC接口文档(air780E)--rtos - RTOS底层操作库

rtos.receive(timeout) 接受并处理底层消息队列. 参数 传入值类型 解释 int 超时时长,通常是-1,永久等待 返回值 返回值类型 解释 msgid 如果是定时器消息,会返回定时器消息id及附加信息, 其他消息由底层决定,不向lua层进行任何保证. 例子 无 rtos.timer_start(id…...

一名技术Leader应该是创作者

今天看了一本书叫做《黑客与画家》。它里面提到一个很重要的概念就是黑客&#xff08;优秀的程序员&#xff09;是一名建筑师&#xff0c;而不是一名工程师。 传统的主管和互联网的Leader 这两者有什么区别呢&#xff1f;关键点在于建筑师是思考做什么&#xff0c;而工程师是…...

Java多线程总结

一、概念&#xff1a; 1、什么是多任务 多任务就是在同一时间做多件事情&#xff0c;如边吃饭边玩手机等。看起来是多个任务都在做&#xff0c;本质上我们的大脑在同一时间依旧只做了一件件事情 2、什么是程序 程序是指令和数据的有序集合&#xff0c;其本身没有…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]

报错信息&#xff1a;libc.so.6: cannot open shared object file: No such file or directory&#xff1a; #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...