FreeRTOS入门(06):任务通知
文章目录
- 目的
- 基础说明
- 使用演示
- 作为二进制信号量
- 作为计数信号量
- 作为事件组
- 作为队列或邮箱
- 相关函数
- 总结
目的
任务通知(TaskNotify)是RTOS中相对常用的用于任务间交互的功能,这篇文章将对相关内容做个介绍。
本文代码测试环境见前面的文章:《FreeRTOS入门(01):基础说明与使用演示》
基础说明
前面介绍的队列、信号量、互斥量、队列集、事件组等功能都需要有个独立于任务的对象,任务通过主动去访问对象来使用相关的功能。事实上目前FreeRTOS的任务句柄本身就带有一个对象,用于任务间交互使用,这就是任务通知。
任务通知因为上面的原因有两大优势:一是轻量(因为不需要额外的对象);二是可以直接通知某个任务(也是因为没有中间商)。
任务中的任务通知结构包含状态和一个32位的数据。FreeRTOS v10.4.0 起支持单任务多条通知( 任务通知数组 ),所以现在很多函数都是因为兼容性冗余存在的。使用任务通知时需要设置下面参数:
configUSE_TASK_NOTIFICATIONS // 为1才能使用任务通知(默认为1)
configTASK_NOTIFICATION_ARRAY_ENTRIES // 为任务通知的每个任务数组中的索引数量(默认为1)
任务通知根据使用的不同可以当作二进制信号量、计数信号量、事件组、队列、邮箱等功能来使用。
使用演示
作为二进制信号量
任务通知作为二进制信号量使用就和真正的信号量一样,使用 give 和 take 函数来操作:
#include "debug.h"
#include "FreeRTOS.h" // 引入头文件
#include "task.h" // 引入头文件TaskHandle_t Task1_Handler; // 任务句柄
TaskHandle_t Task2_Handler; // 任务句柄void task1(void *pvParameters) {while(1) {uint32_t data = ulTaskNotifyTake(pdTRUE, portMAX_DELAY); // 等待任务通知(注意第一个参数)printf("%u task1: %u\r\n", xTaskGetTickCount(), data); // 打印任务通知的值vTaskDelete(NULL);}
}void task2(void *pvParameters) {while(1) {vTaskDelay(500);xTaskNotifyGive(Task1_Handler); // 向task1给出任务通知vTaskDelete(NULL);}
}int main(void) {NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);SystemCoreClockUpdate();Delay_Init();USART_Printf_Init(115200);xTaskCreate(task1, "task1", 256, NULL, 5, &Task1_Handler);xTaskCreate(task2, "task2", 256, NULL, 5, &Task2_Handler);vTaskStartScheduler(); // 任务调度,任务将在这里根据情况开始运行,程序将在这里无序循环while(1) {} // 程序不会运行到这里
}

作为计数信号量
任务通知作为计数信号量使用和作为二进制信号量一样,使用 give 和 take 函数,唯一的区别就是 take 函数的参数不同:
#include "debug.h"
#include "FreeRTOS.h" // 引入头文件
#include "task.h" // 引入头文件TaskHandle_t Task1_Handler; // 任务句柄
TaskHandle_t Task2_Handler; // 任务句柄void task1(void *pvParameters) {vTaskDelay(500);while(1) {uint32_t data = ulTaskNotifyTake(pdFALSE, portMAX_DELAY); // 等待任务通知(注意第一个参数)printf("%u task1: %u\r\n", xTaskGetTickCount(), data); // 打印任务通知的值}
}void task2(void *pvParameters) {while(1) {xTaskNotifyGive(Task1_Handler); // 向task1给出任务通知xTaskNotifyGive(Task1_Handler); // 向task1给出任务通知xTaskNotifyGive(Task1_Handler); // 向task1给出任务通知vTaskDelete(NULL);}
}int main(void) {NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);SystemCoreClockUpdate();Delay_Init();USART_Printf_Init(115200);xTaskCreate(task1, "task1", 256, NULL, 5, &Task1_Handler);xTaskCreate(task2, "task2", 256, NULL, 5, &Task2_Handler);vTaskStartScheduler(); // 任务调度,任务将在这里根据情况开始运行,程序将在这里无序循环while(1) {} // 程序不会运行到这里
}

作为事件组
任务通知作为事件组使用时,任务通知的 notify 函数相当于事件组的 setBits 函数,任务通知的 wait 函数相当于事件组的 waitBits 函数。
#include "debug.h"
#include "FreeRTOS.h" // 引入头文件
#include "task.h" // 引入头文件TaskHandle_t Task1_Handler; // 任务句柄void task1(void *pvParameters) {while(1) {uint32_t value = 0;BaseType_t ret = xTaskNotifyWait(0xfffffffa, 0, &value, portMAX_DELAY); // 在等待前清除bit2和bit0之外的值,事件触发后不清除任何位if (ret == pdPASS ) {printf("%u task1: %u\r\n", xTaskGetTickCount(), value); // 打印任务通知的值}}
}void task2(void *pvParameters) {while(1) {vTaskDelay(500);xTaskNotify(Task1_Handler, 0b0100, eSetBits ); // bit2设置为1vTaskDelete(NULL);}
}void task3(void *pvParameters) {while(1) {vTaskDelay(1000);xTaskNotify(Task1_Handler, 0b0001, eSetBits ); // bit0设置为1vTaskDelete(NULL);}
}int main(void) {NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);SystemCoreClockUpdate();Delay_Init();USART_Printf_Init(115200);xTaskCreate(task1, "task1", 256, NULL, 5, &Task1_Handler);xTaskCreate(task2, "task2", 256, NULL, 5, NULL);xTaskCreate(task3, "task3", 256, NULL, 5, NULL);vTaskStartScheduler(); // 任务调度,任务将在这里根据情况开始运行,程序将在这里无序循环while(1) {} // 程序不会运行到这里
}

作为队列或邮箱
任务通知不管是作为队列还是作为邮箱使用都相当于一个长度只有 1 的队列,使用的是 notify 和 setBits 函数,对这两个参数使用不同的方式会相当于不同的功能。
#include "debug.h"
#include "FreeRTOS.h" // 引入头文件
#include "task.h" // 引入头文件TaskHandle_t Task1_Handler; // 任务句柄void task1(void *pvParameters) {while(1) {uint32_t value = 0;BaseType_t ret = xTaskNotifyWait(0xffffffff, 0, &value, portMAX_DELAY); // 事件触发后清除数据相当于队列
// BaseType_t ret = xTaskNotifyWait(0xffffffff, 0xffffffff, &value, portMAX_DELAY); // 事件触发后不清除数据相当于邮箱if (ret == pdPASS ) {printf("%u task1: %u\r\n", xTaskGetTickCount(), value); // 打印任务通知的值}}
}void task2(void *pvParameters) {while(1) {vTaskDelay(500);xTaskNotify(Task1_Handler, 233, eSetValueWithoutOverwrite); // 写入数据// eSetValueWithoutOverwrite相当于队列,eSetValueWithOverwrite相当于邮箱}
}int main(void) {NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);SystemCoreClockUpdate();Delay_Init();USART_Printf_Init(115200);xTaskCreate(task1, "task1", 256, NULL, 5, &Task1_Handler);xTaskCreate(task2, "task2", 256, NULL, 5, NULL);vTaskStartScheduler(); // 任务调度,任务将在这里根据情况开始运行,程序将在这里无序循环while(1) {} // 程序不会运行到这里
}

相关函数
// 给出通知(索引0)
BaseType_t xTaskNotifyGive( TaskHandle_t xTaskToNotify )
void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken );// 给出通知,uxIndexToNotify为指定索引值
BaseType_t xTaskNotifyGiveIndexed( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify )
void vTaskNotifyGiveIndexedFromISR( TaskHandle_t xTaskHandle, UBaseType_t uxIndexToNotify, BaseType_t *pxHigherPriorityTaskWoken );// 等待通知(索引0)
// xClearCountOnExit为pdFALSE则任务通知的值在该函数退出时递减,为pdTRUE则在退出时清零
uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait );
// 等待通知,uxIndexToWaitOn为指定索引值
uint32_t ulTaskNotifyTakeIndexed( UBaseType_t uxIndexToWaitOn, BaseType_t xClearCountOnExit, TickType_t xTicksToWait );// 给出通知(索引0)
// ulValue为通知的值
// eAction可选值如下:
// eNoAction - 目标任务接收事件,但不用更新值,此时不关心ulValue
// eSetBits - 目标通知的值使用按位或与ulValue进行运算(这通常被当作事件组使用)
// eIncrement - 目标通知的值自增,此时不关心ulValue(这通常被当作信号量使用)
// eSetValueWithOverwrite - 使用ulValue覆盖目标通知的值(这通常被当作邮箱使用)
// eSetValueWithoutOverwrite - (这通常被当作长度为1的队列使用)
BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction );
BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken );// 给出通知,uxIndexToNotify为指定索引值
BaseType_t xTaskNotifyIndexed( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction );
BaseType_t xTaskNotifyIndexedFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken );// 等待通知(索引0)
// ulBitsToClearOnEntry表示等待前清零的任务通知值的位
// ulBitsToClearOnExit表示通知发生后清零的任务通知值的位
// pulNotificationValue用来接收任务通知发生时的值
// 返回值pdPASS表示成功,pdFAIL表示超时
BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait );
// 等待通知,uxIndexToWaitOn为指定索引值
BaseType_t xTaskNotifyWaitIndexed( UBaseType_t uxIndexToWaitOn, uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait );// 给出通知
// 功能类似xTaskNotify
// pulPreviousNotifyValue可以用来接收修改前的目标任务通知的值
BaseType_t xTaskNotifyAndQuery( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotifyValue );
BaseType_t xTaskNotifyAndQueryFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotifyValue, BaseType_t *pxHigherPriorityTaskWoken );
BaseType_t xTaskNotifyAndQueryIndexed( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotifyValue );
BaseType_t xTaskNotifyAndQueryIndexedFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotifyValue, BaseType_t *pxHigherPriorityTaskWoken );// 将通知的状态设置为默认
BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask );
BaseType_t xTaskNotifyStateClearIndexed( TaskHandle_t xTask, UBaseType_t uxIndexToClear );
// 将通知的值设置为默认
uint32_t ulTaskNotifyValueClear( TaskHandle_t xTask, uint32_t ulBitsToClear );
uint32_t ulTaskNotifyValueClearIndexed( TaskHandle_t xTask, UBaseType_t uxIndexToClear, uint32_t ulBitsToClear );
总结
任务通知功能丰富、又轻量,如果可以满足业务功能需求的话,使用任务通知是个不错的选择。
相关文章:
FreeRTOS入门(06):任务通知
文章目录目的基础说明使用演示作为二进制信号量作为计数信号量作为事件组作为队列或邮箱相关函数总结目的 任务通知(TaskNotify)是RTOS中相对常用的用于任务间交互的功能,这篇文章将对相关内容做个介绍。 本文代码测试环境见前面的文章&…...
谷歌seo做的外链怎样更快被semrush识别
本文主要分享做谷歌seo外链如何能让semrush工具快速的记录并能查询到。 本文由光算创作,有可能会被剽窃和修改,我们佛系对待这种行为吧。 谷歌seo做的外链怎样更快被semrush识别? 答案是:多使用semrush搜索目标网站可加速爬虫抓…...
Java | IO 模式之 JavaBIO 应用
文章目录IO模型Java BIOJava NIOJava AIO(NIO.2)BIO、NIO、AIO的使用场景BIO1 BIO 基本介绍2 BIO 的工作机制3 BIO 传统通信实现3.1 业务需求3.2 实现思路3.3 代码实现4 BIO 模式下的多发和多收消息4.1 业务需求4.2 实现思路4.3 代码实现5 BIO 模式下接收…...
C语言学习及复习笔记-【18】C内存管理
18 C内存管理 C 语言为内存的分配和管理提供了几个函数。这些函数可以在 <stdlib.h> 头文件中找到。 序号函数和描述1void *calloc(int num, int size); 在内存中动态地分配 num 个长度为 size 的连续空间,并将每一个字节都初始化为 0。所以它的结果是分配了…...
linux--多线程(一)
文章目录Linux线程的概念线程的优点线程的缺点线程异常线程的控制创建线程线程ID以及进程地址空间终止线程线程等待线程分离线程互斥进程线程间的互斥相关概念互斥量mutex有线程安全问题的售票系统查看ticket--部分的汇编代码互斥量的接口互斥量实现原理探究可重入和线程安全常…...
计算机组成原理(2.1)--系统总线
目录 一、总线基本知识 1.总线 2.总线的信息传送 3.分散连接图 4.注 二、总线结构的计算机举例 1.面向 CPU 的双总线结构框图 2.单总线结构框图 3.以存储器为中心的双总线结构框图 三、总线的分类 1.片内总线 2.系统总线 (板级总线或板间总线&#…...
C语言数组【详解】
数组1. 一维数组的创建和初始化1.1 数组的创建1.2 数组的初始化1.3 一维数组的使用1.4 一维数组在内存中的存储2. 二维数组的创建和初始化2.1 二维数组的创建2.2 二维数组的初始化2.3 二维数组的使用2.4 二维数组在内存中的存储3. 数组越界4. 数组作为函数参数4.1 冒泡排序函数…...
并行与体系结构会议
A类会议 USENIX ATC 2022: USENIX Annual Technical Conference(录用率21%) CCF a, CORE a, QUALIS a1 会议截稿日期:2022-01-06 会议通知日期:2022-04-29 会议日期:2022-07-11 会议地点:Carlsbad, Califo…...
【巨人的肩膀】JAVA面试总结(三)
1、💪 目录1、💪1、说说List, Set, Queue, Map 四者的区别1.1、List1.2、Set1.3、Map2、如何选用集合4、线程安全的集合有哪些?线程不安全的呢?3、为什么需要使用集合4、comparable和Comparator的区别5、无序性和不可重复性的含义…...
嵌入式 STM32 SHT31温湿度传感器
目录 简介 1、原理图 2、时序说明 数据传输 起始信号 结束信号 3、SHT31读写数据 SHT31指令集 读数据 温湿度转换 4、温湿度转换应用 sht3x初始化 读取温湿度 简介 什么是SHT31? 一主机多从机--通过寻址的方式--每个从机都有唯一的地址&…...
哪款蓝牙耳机打电话好用?打电话音质好的蓝牙耳机
现在几乎是人人离不开耳机的时代。在快节奏的生活和充满嘈杂声音的世界中,戴着耳机听歌,是每个人生活中最不可或缺的一段自由、放松的时光,下面小编就来分享几款通话音质好的蓝牙耳机。 一、南卡小音舱蓝牙耳机 动圈单元:13.3mm…...
【C++】-- 内存泄漏
目录 内存泄漏 内存泄漏分类 如何检测内存泄漏 如何避免内存泄漏 内存泄漏 #问:什么是内存泄漏?内存泄漏:指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失,而是应用程序分配某…...
C++ STL学习之【string类的模拟实现】
✨个人主页: Yohifo 🎉所属专栏: C修行之路 🎊每篇一句: 图片来源 The key is to keep company only with people who uplift you, whose presence calls forth your best. 关键是只与那些提升你的人在一起,…...
Selenium基于POM的自动化测试实践
什么是Page Object模式 Page Object 见名知意,就是页面对象,并将页面元素定位方法和元素操作进行分离。在实际自动化测试实战过程中,我们一般对脚本的实现分为三层: (1)对象层: 用于存放页面元素定位和控件操作 (2)逻…...
记录每日LeetCode 2373.矩阵中的局部最大值 Java实现
题目描述: 给你一个大小为 n x n 的整数矩阵 grid 。 生成一个大小为 (n - 2) x (n - 2) 的整数矩阵 maxLocal ,并满足: maxLocal[i][j] 等于 grid 中以 i 1 行和 j 1 列为中心的 3 x 3 矩阵中的 最大值 。 换句话说,我们希…...
QT中级(6)基于QT的文件传输工具(2)
QT中级(6)基于QT的文件传输工具(2)本文实现第一步1 新增功能2 运行效果3 实现思路4 源代码实现这个文件传输工具大概需要那几步?实现多线程对文件的读写实现TCP客户端和服务端实现网络传输 书接上回:QT中级…...
【Linux】工具(3)——gcc/g++
咱们继续进阶,接下来进入到Linux工具中gcc和g的学习在本章博客正式开始介绍之前,我们先要弄清楚程序是怎么翻译的:C语言程序环境一、什么是gcc/g📌gcc是一个c编译器, g是c编译器。我们根据代码的后缀名来判断用哪个编译…...
Android文件选择器
使用方法:在里层的build.grade的dependency里面加入: implementation com.leon:lfilepickerlibrary:1.8.0 引用https://github.com/leonHua/LFilePicker/blob/master/README_CH.md#lfilepicker LFilePicker 说明:如果发现应用名称被修改,可以参考issues#26 查看解决方案,或…...
《MySql学习》 Select 查询语句慢的非性能原因
一.查询被阻塞 A会话执行 查询操作,长时间没有返回信息,此时我们就可以去排查一下是否是被阻塞了 select * from words 被阻塞的原因有很多,首先列举第一种情况 1.等MDL锁 当我们执行DDL语句时,会自动给表加上MDL写锁。当执行DML和DQL时&…...
Vue组件间通信方式超详细(父传子、父传后代、子传父、后代传父、兄弟组件传值)
一、父传子、父传后代 方式一:子通过props来接收 父组件:父组件引入子组件时,通过<child :parentValue "parentValue"></child>子组件传值。 备注:这种方式父传值很方便,但是传递给后代组件不…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
