ROC及曲线面积汇总学习
目录
ROC基础
生成模拟数据
率的计算
R语言计算测试
ROCR:
pROC
ROC绘制
单个ROC
两个ROC
Logistic回归的ROC曲线
timeROC
ROC基础
ROC曲线的横坐标是假阳性率,纵坐标是真阳性率,需要的结果是这个率表示疾病阳性的率(而不能误算为阴性的率)。
ROC阳性结果还是阴性结果?_roc曲线计算阳性阴性预测值-CSDN博客
生成模拟数据
rm(list = ls())
set.seed(1234)
#模拟数据
ca125 <- c(rnorm(10,80,20),rnorm(20,50,10))
##前10个均值为80,标准差为20的正态分布数据,后20个均值为50,标准差为10的正态分布随机数
group <- c(rep(c("肿瘤","非肿瘤"),c(10,20)))#
data <- data.frame(ca125,group)
head(data)
ca125 group 1 55.85869 肿瘤 2 85.54858 肿瘤 3 101.68882 肿瘤 4 33.08605 肿瘤 5 88.58249 肿瘤 6 90.12112 肿瘤
率的计算
#设置ca125>60,判断为肿瘤
data$pre <- ifelse(data$ca125 > 60,"猜他是肿瘤","猜他不是肿瘤")
#列联表
table(data$group,data$pre)猜他不是肿瘤 猜他是肿瘤
非肿瘤 19 1
肿瘤 2 8
根据这个四格表我们就能算出目前的真阳性率和假阳性率:
真阳性率:猜他是肿瘤猜对的人数 / 所有肿瘤人数
假阳性率:猜他是肿瘤猜错的人数 / 所有非肿瘤人数
真阳性率 = 8 / (2+8) = 0.8
假阳性率 = 1 / (19+1) = 0.05
如果目标结果是确定非肿瘤患者:
假阳性率:猜他不是肿瘤猜错的人数 / 所有肿瘤人数
真阳性率:猜他不是肿瘤猜对的人数 / 所有非肿瘤人数
假阳性率 = 2 / (2+8) = 0.2
真阳性率 = 19 / (19+1) = 0.95
R语言计算测试
R语言计算AUC(ROC曲线)的注意事项_r语言auc-CSDN博客
ROCR:
ROCR默认计算顺序靠后的类别的AUC。如果提供给labels的值是有序因子型变量,则排在前面的默认是阴性结果(negtive),排在后面的默认是阳性结果(positive),默认计算阳性结果(排序靠后)的AUC。如果是无序因子、数值、字符、逻辑型变量,会按照R语言的默认排序,比如按照数字大小、首字母顺序等,也是计算排序靠后的类别的AUC。
set.seed(20220840)
ca125_1 <- c(rnorm(10,80,20),rnorm(20,50,10))
ca125_2 <- c(rnorm(10,20,20),rnorm(20,70,10))
class=c(rep(1:0,c(10,20)))tumor <- c(rep(c("癌症","非癌症"),c(10,20)))df <- data.frame(`class`=class,`ca125_1`=ca125_1,`ca125_2`=ca125_2,`tumor`=tumor)
library(ROCR)pred <- prediction(predictions = ca125_1, # 预测指标labels = tumor # 真实结果)performance(pred, "auc")@y.values[[1]]
# [1] 0.075
这里我们想计算癌症的AUC,而不是非癌症的AUC,手动指定顺序!
pred <- prediction(predictions = ca125_1, # 预测指标labels = tumor # 真实结果,label.ordering = c("非癌症","癌症") # 此时就是计算癌症的AUC)performance(pred, "auc")@y.values[[1]]
## [1] 0.925
pROC
pROC包计算AUC也需要用来预测结果的指标以及真实结果。
这个包计算pROC略有不同,它是根据中位数来的,谁的中位数大,就计算谁的AUC,比如我们的这个例子,计算下中位数看看:

ca125_1
# 把ca125_1按照tumor的两个类别进行分组,然后分别计算中位数
tapply(ca125_1, tumor, median)
## 癌症 非癌症
## 81.34426 49.99926(肿瘤的均值大)library(pROC)
roc(response=tumor, predictor=ca125_1)
#Area under the curve: 0.925(计算结果为癌症的)
ca125_2:是计算非癌症的AUC。
tapply(ca125_2, tumor, median)
## 癌症 非癌症
## 13.52771 69.69272(非肿瘤的平均数大)roc(response=tumor, predictor=ca125_2)
Data: ca125_2 in 10 controls (tumor 癌症) < 20 cases (tumor 非癌症).
Area under the curve: 0.9
#需要设置levels和direction
# 此时计算的就是癌症的AUC
roc(response=tumor, predictor=ca125_2,levels=c("非癌症", "癌症"), # 这个顺序随便设定,重要的是directiondirection = "<" # 手动设定非癌症 < 癌症
)
#Data: ca125_2 in 20 controls (tumor 非癌症) < 10 cases (tumor 癌症).
#Area under the curve: 0.1
ROC绘制
各章示例代码/Chapter13 临床诊断实验评价.R · 杨敏迪/Analysis of Medical data by R language - 码云 - 开源中国 (gitee.com)
单个ROC
数据为动脉瘤性蛛网膜下腔出血患者的检测数据和预后:s100b是一个血清指标,outcome根据格拉斯哥评分分为good(4-5分:这里最大为5) 、poor(1-3分)

rm(list = ls())
library(pROC)
data(aSAH)
roc1 <- roc(outcome ~ s100b, data = aSAH)
attributes(roc1)#查看结果包含内容
roc1$auc#
#Area under the curve: 0.7314
> #求约登指数
> roc.result <- data.frame(threshold = roc1$thresholds,
+ sensitivity = roc1$sensitivities,
+ specificity = roc1$specificities)
> View(roc.result)
> roc.result$youden <- roc.result$sensitivity + roc.result$specificity - 1
> head(roc.result)threshold sensitivity specificity youden
1 -Inf 1.0000000 0.00000000 0.00000000
2 0.035 0.9756098 0.00000000 -0.02439024
3 0.045 0.9756098 0.06944444 0.04505420
4 0.055 0.9756098 0.11111111 0.08672087
5 0.065 0.9756098 0.13888889 0.11449864
6 0.075 0.9024390 0.22222222 0.12466125
> #找出约登指数最大的一行
> which.max(roc.result$youden)
[1] 18
> roc.result[18, ]threshold sensitivity specificity youden
18 0.205 0.6341463 0.8055556 0.4397019
绘图
?plot.roc#查看参数细节
plot.roc(roc1, print.auc = TRUE, auc.polygon = TRUE,grid = c(0.1,0.2), grid.col = c("green","red"),auc.polygon.col = "lightblue", print.thres = TRUE)
#AUC的置信区间——DeLong法
ci.auc(roc1)

两个ROC
roc1 <- roc(aSAH$outcome, aSAH$s100b)
roc2 <- roc(aSAH$outcome, aSAH$ndka)
#DeLong非参数方法,Venkatraman回归模型法,bootstrap重抽样法
#默认为DeLong法
#默认为两组相关检测结果AUC的比较
#独立:参数paired = FALSE
roc.test(roc1,roc2)
#绘图
plot(roc1)
lines(roc2, col = "red")
test <- roc.test(roc1, roc2)
text(0.5,0.5, labels = paste("p-value = ",round(test$p.value, 3)))
legend("bottomright",legend = c("S100b", "NDKA"),col = c("1","red"), lwd = 2)

Logistic回归的ROC曲线
二分类变量

data = infert
#建立Logistic回归模型
fit <- glm(case ~ induced + spontaneous, family = binomial, data = infert)
library(epiDisplay)
logistic.display(fit)
#ROC绘制
lroc(fit, line.col = "red", lwd = 2)

timeROC
如何绘制时间依赖性ROC曲线? (qq.com)
参考:
1:《R语言医学数据分析实战》
2:R语言计算AUC(ROC曲线)的注意事项_r语言auc-CSDN博客
3:ROC阳性结果还是阴性结果?_roc曲线计算阳性阴性预测值-CSDN博客
4:各章示例代码/Chapter13 临床诊断实验评价.R · 杨敏迪/Analysis of Medical data by R language - 码云 - 开源中国 (gitee.com)
5:如何绘制时间依赖性ROC曲线? (qq.com)
相关文章:
ROC及曲线面积汇总学习
目录 ROC基础 生成模拟数据 率的计算 R语言计算测试 ROCR: pROC ROC绘制 单个ROC 两个ROC Logistic回归的ROC曲线 timeROC ROC基础 ROC曲线的横坐标是假阳性率,纵坐标是真阳性率,需要的结果是这个率表示疾病阳性的率(…...
LeetCode Hot100 35.搜索插入位置
题目: 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 方法:灵神 二分查找 闭区间写法 c…...
Android frameworks 开发总结之八
Quick Settings增加一項 XXX device要求在quick settings中增加一項touch panel. 在/frameworks/base/packages/SystemUI/res/values/config.xml文件中的quick_settings_tiles_default string 中增加touch panel。並在String resource文件中增加顯示的title <!-- The def…...
Cortex-M与RISC-V区别
环境 Cortex-M以STM32H750为代表,RISC-V以芯来为代表 RTOS版本为RT-Thread 4.1.1 寄存器 RISC-V 常用汇编 RISC-V 关于STORE x4, 4(sp)这种寄存器前面带数字的写法,其意思为将x4的值存入sp4这个地址,即前面的数字表示偏移的意思 反之LOA…...
YashanDB入选2023年世界互联网大会领先科技奖成果集《科技之魅》
近日,由深圳计算科学研究院自主研发的“崖山数据库系统YashanDB”入编2023年世界互联网大会领先科技奖成果集《科技之魅》。此次入选,充分彰显了YashanDB在数据库技术领域的突破性创新成果。 《科技之魅》是世界互联网大会领先科技奖的重要成果ÿ…...
C语言基础程序设计题
1.个人所得税计算 应纳税款的计算公式如下:收入<=1000元部分税率为0%,2000元>=收入>1000元的部分税率为5%,3000元>=收入>2000元的部分税率为10%…...
Spring Boot实现图片上传和展示
Spring Boot实现图片上传和展示 本文将介绍如何使用Spring Boot框架搭建后端服务,实现接收前端上传的图片并保存到resources/images目录下。同时,我们还将展示如何在前端编写一个HTML页面,实现上传图片和从resources/images目录下获取图片并…...
大数据-之LibrA数据库系统告警处理(ALM-37015 Gaussdb进程可用文件句柄资源不足)
告警解释 操作系统环境文件句柄不足时,产生该告警。 告警属性 告警ID 告警级别 可自动清除 37015 严重 是 告警参数 参数名称 参数含义 ServiceName 产生告警的服务名称 RoleName 产生告警的角色名称 HostName 产生告警的主机名 Instance 产生告警…...
大一学编程怎么学?刚接触编程怎么学习,有没有中文编程开发语言工具?
大一学编程怎么学?刚接触编程怎么学习,有没有中文编程开发语言工具? 1、大一刚开始学编程,面对复杂的代码学习非常吃力,很难入门。建议刚接触编程可以先学习中文编程,了解其中的编程逻辑,学编程…...
GoWeb学习-第二天
文章目录 从零开始学Go web——第二天一、安装Go语言二、建立web目录2.1 创建GO语言包目录2.2 创建Go web文件 三、编译并运行Go web应用3.1 编译并运行3.2 查看结果 从零开始学Go web——第二天 第一天我们了解了与web息息相关的HTTP协议,聊了聊Go与web的关系等…...
04-鸿蒙4.0学习之样式装饰器相关
04-鸿蒙4.0学习之样式装饰器 styles装饰器:定义组件重用样式 /*** styles装饰器:定义组件重用样式*/ Entry Component struct StyleUI {State message: string stylesStyles commonStyle(){.width(200).height(100).backgroundColor(Color.Gray).marg…...
C# 线程(1)
目录 1 线程与进程2 创建线程3 线程等待4 线程优先级5 前台线程与后台线程6 Lock与线程安全7 Monitor8 死锁9 线程中异常处理 1 线程与进程 进程是计算机概念,一个程序运用时占用的的所有计算机资源(CPU、内存、硬盘、网络)统称为进程。 线程…...
冒泡排序以及改进方案
冒泡排序以及改进方案 介绍: 冒泡排序属于一种典型的交换排序(两两比较)。冒泡排序就像是把一杯子里的气泡一个个往上冒一样。它不断比较相邻的元素,如果顺序不对就像水泡一样交换它们的位置,直到整个序列像水泡一样…...
QTextEdit 是 Qt 框架中的一个类,用于显示和编辑多行文本内容的可编辑部件
QTextEdit 是 Qt 框架中的一个类,用于显示和编辑多行文本内容的可编辑部件。 QTextEdit 提供了一个用于显示和编辑富文本(包括格式化文本、图像和链接等)和纯文本的文本编辑器。它支持基本的文本操作(如复制、粘贴、撤销、重做等…...
vue+jsonp编写可导出html的模版,可通过外部改json动态更新页面内容
效果 导出后文件结果如图所示,点击Index.html即可查看页面,页面所有数据由report.json控制,修改report.json内容即可改变index.html展示内容 具体实现 1. 编写数据存储的json文件 在index.html所在的public页面新建report.json文件ÿ…...
查看各ip下的连接数
netstat -n | awk /^tcp/ {print $5} | awk -F: {print $1} | sort | uniq -c| sort -rn netstat -n:显示所有的网络连接,不包括任何服务名的解释。awk /^tcp/ {print $5}:使用awk命令过滤出tcp协议的连接,并打印出每个连接的第五…...
Linux—进程状态
目录 一.前言 1.1.通过系统调用获取进程标示符 1.2.通过系统调用创建进程 二.进程状态 三.Z(zombie)-僵尸进程 四.僵尸进程危害 一.前言 学习进程的状态,我们首先了解一下进程的基本数据 1.1.通过系统调用获取进程标示符 由getpid()…...
万宾科技可燃气体监测仪科技作用全览
燃气管网在运行过程中经常会遇到燃气管道泄漏的问题,燃气泄漏甚至会引起爆炸,从而威胁人民的生命和财产安全,因此对燃气管网进行定期巡检是十分必要的工作。但是传统的人工巡检已不能满足城市的需要,除了选择增加巡检人员之外&…...
Python与GPU编程快速入门(三)
3、使用Numba加速Python代码 Numba 是一个 Python 库,它使用行业标准 LLVM 编译器库在运行时将 Python 函数转换为优化的机器代码。 您可能想尝试用它来加速 CPU 上的代码。 然而,Numba还可以将Python 语言的子集转换为CUDA,这就是我们将在这里使用的。 所以我们的想法是,…...
praseInt 和 逻辑或连用
这是做项目时遇到json文件转换 的一个小坑 将json 对象中的值 由字符串(数字字符串) 转换为 数值类型,如果是 转换失败 ,就返回 -1 这里的 parseInt 看起来非常简洁,但是存在一个小坑 transformedData[fieldsToCheck[i]] parseInt(origina…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
