在Spring Boot中隔离@Async异步任务的线程池
在异步任务执行的时候,我们知道其背后都有一个线程池来执行任务,但是为了控制异步任务的并发不影响到应用的正常运作,我们需要对线程池做好相关的配置,以防资源过度使用。这个时候我们就考虑将线程池进行隔离了。
那么我们为啥要隔离@Async异步任务的线程池?
-
控制资源:通过隔离异步任务的线程池,可以更好地控制系统的资源使用。不同类型的异步任务可能对系统资源的需求不同,例如某些任务可能需要更多的线程数或更大的队列容量。通过隔离线程池,可以为每种类型的任务分配适当的资源,避免资源争用和过度消耗。
-
优化性能:隔离异步任务的线程池可以帮助优化系统的性能。如果所有的异步任务共享同一个线程池,当某个任务出现阻塞或执行时间过长时,可能会影响其他任务的执行。通过隔离线程池,可以确保每个任务都有独立的线程池资源,提高系统的并发能力和响应性能。
-
业务隔离:有时候,不同的业务逻辑可能需要不同的异步任务处理方式。通过隔离线程池,可以为每个业务逻辑定义独立的线程池,以满足不同业务的需求。例如,某些任务可能需要更高的优先级或更短的超时时间,而另一些任务可能需要更大的线程池容量。通过隔离线程池,可以更好地管理和调整每个业务逻辑的异步任务执行环境。
下面看一个demo:
demo
-
创建自定义的线程池:首先,你可以创建一个自定义的线程池,用于处理
@Async注解标记的异步任务。可以使用ThreadPoolTaskExecutor类来创建线程池。@Configuration @EnableAsync public class AsyncConfig implements AsyncConfigurer {@Bean(name = "asyncTaskExecutor")public Executor asyncTaskExecutor() {ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();// 配置线程池属性executor.setCorePoolSize(10);executor.setMaxPoolSize(20);executor.setQueueCapacity(100);executor.setThreadNamePrefix("AsyncTask-");executor.initialize();return executor;}@Overridepublic Executor getAsyncExecutor() {return asyncTaskExecutor();} }在上述示例中,我们创建了一个名为
asyncTaskExecutor的线程池,并配置了核心线程数、最大线程数、队列容量等属性。 -
在异步任务方法上指定线程池:接下来,你可以在需要异步执行的方法上使用
@Async注解,并通过value属性指定要使用的线程池。@Service public class MyService {@Async("asyncTaskExecutor")public void asyncMethod() {// 异步任务的具体逻辑} }在上述示例中,我们使用
@Async("asyncTaskExecutor")注解将asyncMethod()方法标记为异步任务,并指定了使用名为asyncTaskExecutor的线程池。
实际案例
记得在启动类中添加@EnableAsync注解呀
我们来初始化多个线程池:
@EnableAsync
@Configuration
public class TaskPoolConfig {@Beanpublic Executor taskExecutor1() {ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();executor.setCorePoolSize(2);executor.setMaxPoolSize(2);executor.setQueueCapacity(10);executor.setKeepAliveSeconds(60);//使用线程名前缀,可以用来观察顺序executor.setThreadNamePrefix("executor-1-");executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());return executor;}@Beanpublic Executor taskExecutor2() {ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();executor.setCorePoolSize(2);executor.setMaxPoolSize(2);executor.setQueueCapacity(10);executor.setKeepAliveSeconds(60);executor.setThreadNamePrefix("executor-2-");executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());return executor;}
}
接下来创建一个异步任务,然后指定要使用线程池名字。
@Slf4j
@Component
public class AsyncTasks {public static Random random = new Random();@Async("taskExecutor1")public CompletableFuture<String> doTaskOne(String taskNo) throws Exception {log.info("开始任务:{}", taskNo);long start = System.currentTimeMillis();Thread.sleep(random.nextInt(10000));long end = System.currentTimeMillis();log.info("完成任务:{},耗时:{} 毫秒", taskNo, end - start);return CompletableFuture.completedFuture("任务完成");}@Async("taskExecutor2")public CompletableFuture<String> doTaskTwo(String taskNo) throws Exception {log.info("开始任务:{}", taskNo);long start = System.currentTimeMillis();Thread.sleep(random.nextInt(10000));long end = System.currentTimeMillis();log.info("完成任务:{},耗时:{} 毫秒", taskNo, end - start);return CompletableFuture.completedFuture("任务完成");}}
创建一个测试类:
@Slf4j
@SpringBootTest
public class ApplicationTests {@Autowiredprivate AsyncTasks asyncTasks;@Testpublic void test() throws Exception {long start = System.currentTimeMillis();// 线程池1CompletableFuture<String> task1 = asyncTasks.doTaskOne("1");CompletableFuture<String> task2 = asyncTasks.doTaskOne("2");CompletableFuture<String> task3 = asyncTasks.doTaskOne("3");// 线程池2CompletableFuture<String> task4 = asyncTasks.doTaskTwo("4");CompletableFuture<String> task5 = asyncTasks.doTaskTwo("5");CompletableFuture<String> task6 = asyncTasks.doTaskTwo("6");// 一起执行CompletableFuture.allOf(task1, task2, task3, task4, task5, task6).join();long end = System.currentTimeMillis();log.info("任务全部完成,总耗时:" + (end - start) + "毫秒");}}
在上面的单元测试中,一共启动了6个异步任务,前三个用的是线程池1,后三个用的是线程池2。
先不执行,根据设置的核心线程2和最大线程数2,我们来猜猜线程的执行顺序。
-
线程池1的三个任务,task1和task2会先获得执行线程,然后task3因为没有可分配线程进入缓冲队列
-
线程池2的三个任务,task4和task5会先获得执行线程,然后task6因为没有可分配线程进入缓冲队列
-
任务task3会在task1或task2完成之后,开始执行
-
任务task6会在task4或task5完成之后,开始执行
执行结果:

通过以上步骤,你可以实现对@Async异步任务的线程池进行隔离。这样可以根据需要创建多个线程池,并为不同的异步任务指定不同的线程池,以实现任务之间的隔离和资源控制。通过隔离@Async异步任务的线程池,可以实现对系统资源的控制、性能的优化和业务逻辑的隔离。这样可以提高系统的稳定性、可伸缩性和灵活性,更好地满足不同业务场景下的需求。
相关文章:
在Spring Boot中隔离@Async异步任务的线程池
在异步任务执行的时候,我们知道其背后都有一个线程池来执行任务,但是为了控制异步任务的并发不影响到应用的正常运作,我们需要对线程池做好相关的配置,以防资源过度使用。这个时候我们就考虑将线程池进行隔离了。 那么我们为啥要…...
FFmpeg架构全面分析
一、简介 它的官网为:https://ffmpeg.org/,由Fabrice Bellard(法国著名程序员Born in 1972)于2000年发起创建的开源项目。该人是个牛人,在很多领域都有很大的贡献。 FFmpeg是多媒体领域的万能工具。只要涉及音视频领…...
OAuth(开放授权)介绍
OAuth(开放授权)是一个开放标准,允许用户授权第三方应用访问他们存储在另一服务提供商上的信息,而无需将用户名和密码直接暴露给第三方应用。这个过程提供了一种安全的授权方式,常用于允许用户让第三方应用访问例如邮箱…...
Online ddl和replace ddl
在这个之前我们先来了解两种文件类型 1. .ibd文件 表数据文件,存储了表的数据和索引信息,从Mysql8开始表定义信息,从.frm文件改为.dcl文件存储,而表数据和索引信息仍然储存在.ibd文件,.idb文件通常在书籍库目录下。 …...
WEB渗透—反序列化(九)
Web渗透—反序列化 课程学习分享(课程非本人制作,仅提供学习分享) 靶场下载地址:GitHub - mcc0624/php_ser_Class: php反序列化靶场课程,基于课程制作的靶场 课程地址:PHP反序列化漏洞学习_哔哩哔_…...
蓝桥杯day02——第三大的数
题目 给你一个非空数组,返回此数组中 第三大的数 。如果不存在,则返回数组中最大的数。 示例 1: 输入:[3, 2, 1] 输出:1 解释:第三大的数是 1 。 示例 2: 输入:[1, 2] 输出&…...
linux shell中set -e命令的作用
set -e 是一个在shell脚本中常用的命令,它的含义是在脚本执行过程中,如果出现任何一个命令的执行结果不是零(即命令执行失败),则立即退出整个脚本。 set -e 的用途是在脚本中进行错误处理和控制流程。通过设置set -e&…...
linux shell 字符替换命令
sed 文本 2.txt 内容如下: 1 2 3 4 511 121abcabcc1.替换文本指定字符或字符串,不更改原文件 将文本内容替换并输出,但不直接在原文档中修改: sed "s/旧字符串/新字符串/g" 文档 范例,将文本中的 1 替换为 b rootheihei:/# sed &…...
Vue3生命周期函数(简述题)
1.图示 2.说明 3.补充 1.在vue3组合式API中,我们需要将生命周期函数先导入,然后才能使用。 import {onMounted} from vue2.beforeCreate和created被setup()方法所代替...
11月29日,每日信息差//雷军个人向武汉大学捐赠13亿元现金//看电视默认设置新规一览:开机广告不超 5 秒、不设置一键付费
🎖 继长安汽车后,蔚来将与吉利控股达成换电业务合作 🎄 中国飞鹤入选工信部质量提升典型案例 🎆 雷军个人向武汉大学捐赠13亿元现金 🎇 奢侈品电商Farfetch或将私有化 🎁 亚马逊云科技宣布推出Amazon Q ✨ …...
融资经理简历模板
这份简历内容,以综合柜员招聘需求为背景,我们制作了1份全面、专业且具有参考价值的简历案例,大家可以灵活借鉴。 融资经理简历在线编辑下载:百度幻主简历 求职意向 求职类型:全职 意向岗位:融资经理 …...
iptables防火墙之SNAT与DNET
NAT 1.SNAT:让内网可以访问外网 2.DNAT:让外网可以访问到内网的机器 网关服务器,要开启路由功能 内核功能: sysctl -a 列出所有参数 内核参数,然后grep可以查看到默认的内核参数 内核参数配置文件 /etc/sysctl.…...
mysql使用--备份与恢复
1.mysqldump 1.1.使用mysqldump备份数据 1.1.1.备份指定数据库中的指定表 如:mysqldump [其他选项] 数据库名 [表1名 表2名 …] 如:mysqldump -uroot -hlocalhost -p1234 database1 student_score > student_score.sql 上述采用-u和-p完成用户登录&am…...
【vue实战项目】通用管理系统:信息列表,信息录入
本文为博主的vue实战小项目系列中的第六篇,很适合后端或者才入门的小伙伴看,一个前端项目从0到1的保姆级教学。前面的内容: 【vue实战项目】通用管理系统:登录页-CSDN博客 【vue实战项目】通用管理系统:封装token操作…...
【驱动】SPI驱动分析(六)-RK SPI驱动分析
前言 Linux的spi接口驱动实现目录在kernel\drivers\spi下。这个目录和一些层次比较明显的驱动目录布局不同,全放在这个文件夹下,因此还是只好通过看Kconfig 和 Makefile来找找思路 先看Makefile,里面关键几行: obj-$(CONFIG_SPI…...
【Linux】基础IO--文件基础知识/文件操作/文件描述符
文章目录 一、文件相关基础知识二、文件操作1.C语言文件操作2.操作系统文件操作2.1 比特位传递选项2.2 文件相关系统调用2.3 文件操作接口的使用 三、文件描述符fd1.什么是文件描述符2.文件描述符的分配规则 一、文件相关基础知识 我们对文件有如下的认识: 1.文件 …...
Intellij IDEA 的安装和使用以及配置
IDE有很多种,常见的Eclipse、MyEclipse、Intellij IDEA、JBuilder、NetBeans等。但是这些IDE中目前比较火的是Intellij IDEA(以下简称IDEA),被众多Java程序员视为最好用的Java集成开发环境,今天的主题就是IDEA为开发工…...
Zynq-Linux移植学习笔记之67- 国产ZYNQ上通过GPIO模拟MDC/MDIO协议
1、背景介绍 模块上有9个PHY,其中两个PHY通过ZYNQ PS端的MDIO总线连接,其余7个PHY单独通过GPIO进行控制,需要实现GPIO模拟MDC/MDIO协议。 2、vivado工程设计 vivado工程内为每个PHY建立两个GPIO IP核,分别用来代表MDC和MDIO&…...
Zookeeper(一)在WSL单机搭建Zookeeper伪集群
目录 Zookeeper1 启动单个Zookeeper实例1.1 下载Zookeeper安装包并解压1.2 添加环境变量1.3 修改默认配置1.4 新建数据存储目录和日志目录1.5 启动Zookeeper1.6 停止Zookeeper 2 搭建Zookeeper集群2.1 新建集群目录2.2 配置环境变量2.3 创建节点目录2.4 修改配置2.5 创建节点ID…...
QT(18):QString
目录 QStringQTypedArrayDataQTypedArrayDataQLatin1StringQStringLiteral乱码 QStringRef QString QString 存储16位QChar的字符串,其中每个QChar对应一个 UTF-16代码单元。QString 使用(写入时复制copy-on-write)来减少内存使用并避免不必…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
