生成对抗网络(GAN)手写数字生成
文章目录
- 一、前言
- 二、前期工作
- 1. 设置GPU(如果使用的是CPU可以忽略这步)
- 二、什么是生成对抗网络
- 1. 简单介绍
- 2. 应用领域
- 三、网络结构
- 四、构建生成器
- 五、构建鉴别器
- 六、训练模型
- 1. 保存样例图片
- 2. 训练模型
- 七、生成动图
一、前言
我的环境:
- 语言环境:Python3.6.5
- 编译器:jupyter notebook
- 深度学习环境:TensorFlow2.4.1
往期精彩内容:
- 卷积神经网络(CNN)实现mnist手写数字识别
- 卷积神经网络(CNN)多种图片分类的实现
- 卷积神经网络(CNN)衣服图像分类的实现
- 卷积神经网络(CNN)鲜花识别
- 卷积神经网络(CNN)天气识别
- 卷积神经网络(VGG-16)识别海贼王草帽一伙
- 卷积神经网络(ResNet-50)鸟类识别
- 卷积神经网络(AlexNet)鸟类识别
- 卷积神经网络(CNN)识别验证码
- 卷积神经网络(Inception-ResNet-v2)交通标志识别
来自专栏:机器学习与深度学习算法推荐
二、前期工作
1. 设置GPU(如果使用的是CPU可以忽略这步)
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")# 打印显卡信息,确认GPU可用
print(gpus)
from tensorflow.keras import layers, datasets, Sequential, Model, optimizers
from tensorflow.keras.layers import LeakyReLU, UpSampling2D, Conv2Dimport matplotlib.pyplot as plt
import numpy as np
import sys,os,pathlib
img_shape = (28, 28, 1)
latent_dim = 200
二、什么是生成对抗网络
1. 简单介绍
生成对抗网络(GAN) 包含生成器和判别器,两个模型通过对抗训练不断学习、进化。
生成器(Generator):生成数据(大部分情况下是图像),目的是“骗过”判别器。鉴别器(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器生成的“假数据”。
2. 应用领域
GAN 的应用十分广泛,它的应用包括图像合成、风格迁移、照片修复以及照片编辑,数据增强等等。
1)风格迁移
图像风格迁移是将图像A的风格转换到图像B中去,得到新的图像。
2)图像生成
GAN 不但能生成人脸,还能生成其他类型的图片,比如漫画人物。
三、网络结构
简单来讲,就是用生成器生成手写数字图像,用鉴别器鉴别图像的真假。二者相互对抗学习(卷),在对抗学习(卷)的过程中不断完善自己,直至生成器可以生成以假乱真的图片(鉴别器无法判断其真假)。结构图如下:

GAN步骤:
- 1.生成器(Generator)接收随机数并返回生成图像。
- 2.将生成的数字图像与实际数据集中的数字图像一起送到鉴别器(Discriminator)。
- 3.鉴别器(Discriminator)接收真实和假图像并返回概率,0到1之间的数字,1表示真,0表示假。
四、构建生成器
def build_generator():# ======================================= ## 生成器,输入一串随机数字生成图片# ======================================= #model = Sequential([layers.Dense(256, input_dim=latent_dim),layers.LeakyReLU(alpha=0.2), # 高级一点的激活函数layers.BatchNormalization(momentum=0.8), # BN 归一化layers.Dense(512),layers.LeakyReLU(alpha=0.2),layers.BatchNormalization(momentum=0.8),layers.Dense(1024),layers.LeakyReLU(alpha=0.2),layers.BatchNormalization(momentum=0.8),layers.Dense(np.prod(img_shape), activation='tanh'),layers.Reshape(img_shape)])noise = layers.Input(shape=(latent_dim,))img = model(noise)return Model(noise, img)
五、构建鉴别器
def build_discriminator():# ===================================== ## 鉴别器,对输入的图片进行判别真假# ===================================== #model = Sequential([layers.Flatten(input_shape=img_shape),layers.Dense(512),layers.LeakyReLU(alpha=0.2),layers.Dense(256),layers.LeakyReLU(alpha=0.2),layers.Dense(1, activation='sigmoid')])img = layers.Input(shape=img_shape)validity = model(img)return Model(img, validity)
# 创建判别器
discriminator = build_discriminator()
# 定义优化器
optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator.compile(loss='binary_crossentropy',optimizer=optimizer,metrics=['accuracy'])# 创建生成器
generator = build_generator()
gan_input = layers.Input(shape=(latent_dim,))
img = generator(gan_input)# 对生成的假图片进行预测
validity = discriminator(img)
combined = Model(gan_input, validity)
combined.compile(loss='binary_crossentropy', optimizer=optimizer)
六、训练模型
1. 保存样例图片
def sample_images(epoch):"""保存样例图片"""row, col = 4, 4noise = np.random.normal(0, 1, (row*col, latent_dim))gen_imgs = generator.predict(noise)fig, axs = plt.subplots(row, col)cnt = 0for i in range(row):for j in range(col):axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')axs[i,j].axis('off')cnt += 1fig.savefig("images/%05d.png" % epoch)plt.close()
2. 训练模型
train_on_batch:函数接受单批数据,执行反向传播,然后更新模型参数,该批数据的大小可以是任意的,即,它不需要提供明确的批量大小,属于精细化控制训练模型。
def train(epochs, batch_size=128, sample_interval=50):# 加载数据(train_images,_), (_,_) = tf.keras.datasets.mnist.load_data()# 将图片标准化到 [-1, 1] 区间内 train_images = (train_images - 127.5) / 127.5# 数据train_images = np.expand_dims(train_images, axis=3)# 创建标签true = np.ones((batch_size, 1))fake = np.zeros((batch_size, 1))# 进行循环训练for epoch in range(epochs): # 随机选择 batch_size 张图片idx = np.random.randint(0, train_images.shape[0], batch_size)imgs = train_images[idx] # 生成噪音noise = np.random.normal(0, 1, (batch_size, latent_dim))# 生成器通过噪音生成图片,gen_imgs的shape为:(128, 28, 28, 1)gen_imgs = generator.predict(noise)# 训练鉴别器 d_loss_true = discriminator.train_on_batch(imgs, true)d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)# 返回loss值d_loss = 0.5 * np.add(d_loss_true, d_loss_fake)# 训练生成器noise = np.random.normal(0, 1, (batch_size, latent_dim))g_loss = combined.train_on_batch(noise, true)print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))# 保存样例图片if epoch % sample_interval == 0:sample_images(epoch)
train(epochs=30000, batch_size=256, sample_interval=200)
七、生成动图
如果报错:ModuleNotFoundError: No module named 'imageio' 可以使用:pip install imageio 安装 imageio 库。
import imageiodef compose_gif():# 图片地址data_dir = "images_old"data_dir = pathlib.Path(data_dir)paths = list(data_dir.glob('*'))gif_images = []for path in paths:print(path)gif_images.append(imageio.imread(path))imageio.mimsave("test.gif",gif_images,fps=2)compose_gif()
相关文章:
生成对抗网络(GAN)手写数字生成
文章目录 一、前言二、前期工作1. 设置GPU(如果使用的是CPU可以忽略这步) 二、什么是生成对抗网络1. 简单介绍2. 应用领域 三、网络结构四、构建生成器五、构建鉴别器六、训练模型1. 保存样例图片2. 训练模型 七、生成动图 一、前言 我的环境࿱…...
LeetCode Hot100 31.下一个排列
题目: 整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。 例如,arr [1,2,3] ,以下这些都可以视作 arr 的排列:[1,2,3]、[1,3,2]、[3,1,2]、[2,3,1] 。 整数数组的 下一个排列 是指其整数的下一个字典序更大的排列…...
Redis主从与哨兵架构详解
目录 主从架构 主从环境搭建 主从复制流程 1. 全量复制 2. 部分复制 主从风暴 哨兵架构 概念 哨兵环境搭建 主从架构 主从环境搭建 1. 复制一份redis.conf文件, 修改下面几行配置 port 6380 pidfile /var/run/redis_6380.pid logfile "6380.log" dir /usr/…...
Linux:docker的数据管理(6)
数据管理操作*方便查看容器内产生的数据 *多容器间实现数据共享 两种管理方式数据卷 数据卷容器 1.数据卷 数据卷是一个供容器使用的特殊目录,位于容器中,可将宿主机的目录挂载到数据卷上,对数据卷的修改操作立刻可见,并且更新数…...
深入理解Zookeeper系列-1.初识Zoookeeper
👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码、Kafka原理、分布式技术原理🔥如果感觉博主的文章还不错的话ÿ…...
芯片技术探索:了解构芯片的设计与制造之旅
芯片技术探索:了解构芯片的设计与制造之旅 一、引言 随着现代科技的飞速发展,芯片作为信息技术的核心,已经渗透到我们生活的方方面面。从智能手机、电视、汽车到医疗设备和工业控制系统,芯片在各个领域都发挥着至关重要的作用。然而,对于大多数人来说,芯片仍然是一个神秘…...
STM32 超声波模块(HC-SR04)
HC-SR04介绍 典型工作电压:5v (如果你的超声波模块没有工作,可以看一下是不是电压不够)超小静态工作电流:<2mA 感应角度:<15 (超声波模块,是一个范围式的探…...
ELK+Filebeat
Filebeat概述 1.Filebeat简介 Filebeat是一款轻量级的日志收集工具,可以在非JAVA环境下运行。 因此,Filebeat常被用在非JAVAf的服务器上用于替代Logstash,收集日志信息。实际上,Filebeat几乎可以起到与Logstash相同的作用&…...
MySql之锁表、锁行解决方案
查询正在使用的表,没有跑业务,一般情况下是锁表了 show open tables where in_use > 0 ;查看进程,可以看到Command类型(Sleep为阻塞线程) show processlist;kill事务,kill 进程Id kill 8193583;其他 …...
2023年第十六届山东省职业院校技能大赛中职组“网络安全”赛项竞赛正式试题
第十六届山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题 目录 一、竞赛时间 二、竞赛阶段 三、竞赛任务书内容 (一)拓扑图 (二)A模块基础设施设置/安全加固(200分) (三…...
JAVA 整合 AWS S3(Amazon Simple Storage Service)文件上传,分片上传,删除,下载
依赖 因为aws需要发送请求上传、下载等api,所以需要加上httpclient相关的依赖 <dependency><groupId>com.amazonaws</groupId><artifactId>aws-java-sdk-s3</artifactId><version>1.11.628</version> </dependency&…...
记录:Unity脚本的编写9.0
目录 射线一些准备工作编写代码 突然发现好像没有写过关于射线的内容,我就说怎么总感觉好像少了什么东西(心虚 那就在这里写一下关于射线的内容吧,将在这里实现射线检测鼠标点击的功能 射线 射线是一种在Unity中检测碰撞器或触发器的方法&am…...
共享单车停放(简单的struct结构运用)
本来不想写这题的,但是想想最近沉迷玩雨世界,班长又问我这题,就草草写了一下 代码如下: #include<stdio.h> #include<math.h> struct parking{int distance;int remain;int speed;int time;int jud; }parking[50]; …...
【Java8系列07】Java8日期处理
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
为什么做CSGO搬砖的不直接去炒股呢?
首先,CS2并非只有一个交易平台,阿阳个人觉得像IGXE等交易平台一样是交易,况且我记得很早的时候我就开始用IGXE了,我记得最早的时候还是机器人发货,后来因为V社对于很多开箱网站的管控,所以让这种发货的方式…...
12月01日,每日信息差//阿里国际发布3款AI设计生态工具//美团买菜升级为“小象超市”//外国人永居证换新、6国游客免签来华
_灵感 🎖 阿里国际发布3款AI设计生态工具 🎄 AITO问界系列11月交付新车18827辆 🌍 美团买菜升级为“小象超市” 🌋 全球首个金融风控大模型国际标准出炉,由腾讯牵头制定 🎁 支付宝:支持外国人…...
ChatGPT探索:提示工程详解—程序员效率提升必备技能【文末送书】
文章目录 一.人工智能-ChatGPT1.1 ChatGPT简介1.2 ChatGPT探索:提示工程详解1.2 提示工程的优势 二.提示工程探索2.1 提示工程实例:2.2 英语学习助手2.3 Active-Prompt思维链(CoT)方法2.4 提示工程总结 三.文末推荐与福利3.1《Cha…...
Pytest做性能测试?
Pytest其实也是可以做性能测试或者基准测试的。是非常方便的。 可以考虑使用Pytest-benchmark类库进行。 安装pytest-benchmark 首先,确保已经安装了pytest和pytest-benchmark插件。可以使用以下命令安装插件: pip install pytest pytest-benchmark …...
Swagger各版本访问地址
2.9.x 访问地址: http://ip:port/{context-path}/swagger-ui.html 3.0.x 访问地址: http://ip:port/{context-path}/swagger-ui/index.html 3.0集成knife4j 访问地址: http://ip:port/{context-path}/doc.html...
docker-compose;私有镜像仓库harbor搭建;镜像推送到私有仓库harbor
docker-compose;私有镜像仓库harbor搭建;镜像推送到私有仓库harbor 文章目录 docker-compose;私有镜像仓库harbor搭建;镜像推送到私有仓库harbordocker-compose私有镜像仓库harbor搭建镜像推送到私有仓库harbor docker-compose D…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
