当前位置: 首页 > news >正文

基于OpenCV+YOLOv5实现车辆跟踪与计数(附源码)

导  读

    本文主要介绍基于OpenCV+YOLOv5实现车辆跟踪与计数的应用,并给出源码。

资源下载

    基础代码和视频下载地址:

https://github.com/freedomwebtech/win11vehiclecount

图片

main.py代码:​​​​​​​

import cv2import torchimport numpy as npfrom tracker import *model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
cap=cv2.VideoCapture('highway.mp4')
count=0tracker = Tracker()def POINTS(event, x, y, flags, param):    if event == cv2.EVENT_MOUSEMOVE :          colorsBGR = [x, y]        print(colorsBGR)        
cv2.namedWindow('FRAME')cv2.setMouseCallback('FRAME', POINTS)
while True:    ret,frame=cap.read()    if not ret:        break    count += 1    if count % 3 != 0:        continue    frame=cv2.resize(frame,(1020,600))    results=model(frame)    results.pandas().xyxy[0]                       cv2.imshow("FRAME",frame)    if cv2.waitKey(0)&0xFF==27:        breakcap.release()cv2.destroyAllWindows()

tracker.py代码:​​​​​​​

import mathclass Tracker:    def __init__(self):        # Store the center positions of the objects        self.center_points = {}        # Keep the count of the IDs        # each time a new object id detected, the count will increase by one        self.id_count = 0    def update(self, objects_rect):        # Objects boxes and ids        objects_bbs_ids = []
        # Get center point of new object        for rect in objects_rect:            x, y, w, h = rect            cx = (x + x + w) // 2            cy = (y + y + h) // 2
            # Find out if that object was detected already            same_object_detected = False            for id, pt in self.center_points.items():                dist = math.hypot(cx - pt[0], cy - pt[1])
                if dist < 35:                    self.center_points[id] = (cx, cy)#                    print(self.center_points)                    objects_bbs_ids.append([x, y, w, h, id])                    same_object_detected = True                    break
            # New object is detected we assign the ID to that object            if same_object_detected is False:                self.center_points[self.id_count] = (cx, cy)                objects_bbs_ids.append([x, y, w, h, self.id_count])                self.id_count += 1
        # Clean the dictionary by center points to remove IDS not used anymore        new_center_points = {}        for obj_bb_id in objects_bbs_ids:            _, _, _, _, object_id = obj_bb_id            center = self.center_points[object_id]            new_center_points[object_id] = center
        # Update dictionary with IDs not used removed        self.center_points = new_center_points.copy()        return objects_bbs_ids

    下载测试视频highway.mp4(download.txt中有链接):

图片

    安装ultralytics:

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

图片

      

实现车辆检测

    添加代码查看YoloV5模型检测输出信息:

图片

图片

    添加车辆检测结果绘制:

图片

图片

      

实现车辆跟踪

    将车辆矩形坐标保存到list中:

图片

    添加对象跟踪:

图片

图片

    车辆跟踪效果:

图片

图片

      

实现车辆计数

【1】划定一个多边形区域(黄色),车辆经过此区域则计数;

cv2.polylines(frame,[np.array(areal,np.int32)],True,(0,255,255),3)

【2】绿色点标注车辆矩形框右下角坐标点,如下图:

cv2.circle(frame,(x3,y3),4,(0,255,0),-1)

图片

【3】计数原理:判断绿色点是否在黄色四边形内,如果在内计数+1

图片

图片

计算点到多边形的距离使用的是OpenCV中pointPolygonTest函数:

图片

当result > 0表示点在轮廓内,也就是车辆在多边形内。此时将车辆id编号添加到集合area_1中,然后通过len(area_1)作为车辆计数值。

注意:这里为什么不直接用count += 1来计算数量?如果用count += 1会造成很多重复计数,而代码中利用了python集合的特性,add函数添加元素时,如果元素已经存在,则不重复添加,有效的避免了重复计数问题。

最终效果如下:

图片

相关文章:

基于OpenCV+YOLOv5实现车辆跟踪与计数(附源码)

导 读 本文主要介绍基于OpenCVYOLOv5实现车辆跟踪与计数的应用&#xff0c;并给出源码。 资源下载 基础代码和视频下载地址&#xff1a; https://github.com/freedomwebtech/win11vehiclecount main.py代码:​​​​​​​ import cv2import torchimport numpy as npfrom tr…...

05、pytest断言确定的异常

官方用例 # content of test_sysexit.py import pytestdef f():raise SystemExit(1)def test_mytest():with pytest.raises(SystemExit):f()解读与实操 ​ 标准python raise函数可产生异常。pytest.raises可以断言某个异常会发现。异常发生了&#xff0c;用例执行成功&#x…...

金蝶云星空单据编辑界面,不允许批量填充操作

文章目录 金蝶云星空单据编辑界面&#xff0c;不允许批量填充操作案例演示开发设计测试 金蝶云星空单据编辑界面&#xff0c;不允许批量填充操作 案例演示 售后单&#xff0c;明细信息单据体&#xff0c;物料编码字段禁止批量填充。 开发设计 编写表单插件&#xff0c;在Be…...

Springboot项目启动成功后可通过五种方式继续执行

实现CommandLineRunner接口 项目初始化完毕后&#xff0c;才会调用方法&#xff0c;提供服务 Component public class StartRunner implements CommandLineRunner {Overridepublic void run(String... args) throws Exception {System.out.println("CommandLineRunner&qu…...

什么是供应链金融分账系统?

一、供应链金融的重要性 供应链金融在很多行业都是要用到,比如在抖音,快手店铺的商家资金回笼,通常需要7-21天的回款周期,这对于商家的周转来说是一件很困难的事情,在供应链金融中&#xff0c;分账就扮演着至关重要的角色&#xff0c;不仅是金融流程中的一环&#xff0c;更是保…...

【测绘程序设计】——坐标换带与高程投影

测绘工程中经常遇到 “坐标换带” 与 “高程投影” 问题,前者是在改变投影的分带号——即投影的中央子午线,通过 “(x,y)->(B,L)->(x,y)” 进行;而后者则是为减小投影变形(高程投影变短、高斯投影变长,详情可参考博客《测绘综合能力》真题易错本 第(37)条)通过平…...

企业计算机服务器中了Mallox勒索病毒如何解密,Mallox勒索病毒数据恢复

随着计算机技术的不断应用与发展&#xff0c;网络为企业的生产运营提供了极大帮助&#xff0c;越来越多的企业开始利用网络办公&#xff0c;因此&#xff0c;随之而来的网络安全威胁也在不断增加。近期&#xff0c;云天数据恢复中心陆续接到很多企业的求助&#xff0c;企业的计…...

一套rk3588 rtsp服务器推流的 github 方案及记录 -01

我不生产代码&#xff0c;我只是代码的搬运工&#xff0c;相信我&#xff0c;看完这个文章你的图片一定能变成流媒体推出去。 诉求&#xff1a;使用opencv拉流&#xff0c;转成bgr数据&#xff0c;需要把处理后的数据&#xff08;BGR&#xff09;编码成264&#xff0c;然后推流…...

PyQt6 QComboBox下拉组合框控件

​锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计34条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话…...

常用类与比较器

常用类 学一个类&#xff0c;先搞清楚继承关系&#xff0c;再看源码 包装类Wrapper jdk5之前是手动装箱拆箱 jdk5及之后是自动装箱拆箱&#xff08;调用valueOf方法&#xff08;自动默认&#xff09;/创建对象的构造方法&#xff0c;XXXvalue方法…...

【上海大学《面向对象程序设计A》课程小项目报告】抽象向量类模板及其派生类

1 项目内容及要求 本项目通过设计一个抽象向量类模板&#xff0c;以及一个通用的向量类模板和一个字符串类作为其派生类&#xff0c;以满足各种应用场景中的数据存储和处理需求。 项目内容&#xff1a; 抽象向量类模板。派生向量类。派生字符串类。测试及异常处理。联合测试…...

Leetcode每日一题学习训练——Python3版(到达首都的最少油耗)

版本说明 当前版本号[20231205]。 版本修改说明20231205初版 目录 文章目录 版本说明目录到达首都的最少油耗理解题目代码思路参考代码 原题可以点击此 2477. 到达首都的最少油耗 前去练习。 到达首都的最少油耗 ​ 给你一棵 n 个节点的树&#xff08;一个无向、连通、无环…...

Java面试题(每天10题)-------连载(42)

目录 Spring篇 1、Spring Bean的作用域之间有什么区别&#xff1f; 2、什么是Spring inner beans&#xff1f; 3、Spring框架中的单例Beans是线程安全的吗&#xff1f; 4、请举例说明如何在Spring中诸如一个Java Collection&#xff1f; 5、如何向Spring Bean中诸如一个J…...

netty websocket学习

【硬核】肝了一月的Netty知识点 超详细Netty入门&#xff0c;看这篇就够了&#xff01; bzm_netty_sb netty-chat vuewebsokect实现实时聊天&#xff0c;可单聊、可群聊&#xff08;一&#xff09; vue实现聊天栏定位到最底部&#xff08;超简单、可直接复制使用&#xff09;…...

【数据结构】环形队列

环形队列 1. 定义 环形队列就是将队列在逻辑上看作环形结构、物理上仍是数组形式存储的一种数据结构。 其实现主要分为两种情况&#xff1a; 浪费空间法记录空间法 2. 实现 实现要考虑的是成员变量 2.1 记录空间法 使用used标识当前存储了多少元素&#xff0c;如果为空&a…...

嵌入式C编码规范

嵌入式C编码规范 编码规范&#xff0c;没有最好&#xff0c;只有最合适&#xff0c;有但不执行不如没有。 嵌入式C编码规范 https://mp.weixin.qq.com/s/z4u3YnF6vdQ1olsLeF-y_A 更多嵌入式信息请关注微信公众号【嵌入式系统】...

Golang 并发 — 流水线

并发模式 我们可以将流水线理解为一组由通道连接并由 goroutine 处理的阶段。每个阶段都被定义为执行特定的任务&#xff0c;并按顺序执行&#xff0c;下一个阶段在前一个阶段完成后开始执行。 流水线的另一个重要特性是&#xff0c;除了连接在一起&#xff0c;每个阶段都使用…...

Elasticsearch:什么是非结构化数据?

非结构化数据定义 非结构化数据是指未按照设计的模型或结构组织的数据。 非结构化数据通常被归类为定性数据&#xff0c;可以是人类或机器生成的。 非结构化数据是最丰富的可用数据类型&#xff0c;经过分析后&#xff0c;可用于指导业务决策并在许多其他用例中实现业务目标。…...

15:00的面试,15:06就出来了,问的问题过于变态了。。。

从小厂出来&#xff0c;没想到在另一家公司又寄了。 到这家公司开始上班&#xff0c;加班是每天必不可少的&#xff0c;看在钱给的比较多的份上&#xff0c;就不太计较了。没想到5月一纸通知&#xff0c;所有人不准加班&#xff0c;加班费不仅没有了&#xff0c;薪资还要降40%…...

Web自动化测试怎么做?Web网页测试全流程解析

1、功能测试 web网页测试中的功能测试&#xff0c;主要测试网页中的所有链接、数据库连接、用于在网页中提交或获取用户信息的表单、Cookie 测试等。 &#xff08;1&#xff09;查看所有链接&#xff1a; 测试从所有页面到被测特定域的传出链接。 测试所有内部链接。 测…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...