Java - 数据结构,二叉树
一、什么是树
概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
1、有一个特殊的结点,称为根结点,根结点没有前驱结点除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、…、Tm,其中每一个集合 Ti (1 <= i<= m) 又是一棵与树类似的子树。
2、每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
3、树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
1.1、 概念(重要)
1、结点的度:一个结点含有子树的个数称为该结点的度; 如图:A的度为6
2、树的度:一棵树中,所有结点度的最大值称为树的度; 如图:树的度为6
3、叶子结点或终端结点:度为0的结点称为叶结点; 如图:B、C、H、I…等节点为叶结点
4、双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如图:A是B的父结点,A是C的父结点,A是D的父结点…
5、孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如图:B是A的孩子结点,C是A的孩子结点,D是A的孩子结点
6、根结点:一棵树中,没有双亲结点的结点;如图:A
7、结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
8、树的高度:树中结点的最大层次; 如图A:树的高度为4,
树的深度:A的深度是1,E的深度是2,J的深度是3,Q的深度是4
9、非终端结点或分支结点:度不为0的结点; 如图:D、E、F、G…等节点为分支结点
10、兄弟结点:具有相同父结点的结点互称为兄弟结点; 如图:B、C是兄弟结点
11、堂兄弟结点:双亲在同一层的结点互为堂兄弟;如图:H、I互为兄弟结点
12、结点的祖先:从根到该结点所经分支上的所有结点;如图:A是所有结点的祖先
13、子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
14、森林:由m(m>=0)棵互不相交的树组成的集合称为森林
1.2、树的表示形式
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
class Node {int value; // 树中存储的数据Node firstChild; // 第一个孩子引用Node nextBrother; // 下一个兄弟引用
}
孩子兄弟表示法
孩子双亲表示法
1.3、树的应用
文件系统管理(目录和文件)
二、二叉树
2.1、概念
一棵二叉树是结点的一个有限集合,该集合:
- 或者为空
- 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成
二叉树 跟我们前面讲的树的区别就在于:二叉树 的 每个结点,最多只能有 两个 “孩子”/子树,最少 零个。
也就是说:一棵树,如果是二叉树,那么它的每棵子树都是 二叉树【都有左子树 和 右子树】。
注意:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
3. 对于任意的二叉树都是由以下几种情况复合而成的:
2.2、两种特殊的二叉树
2.2.1、 满二叉树
满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是 ,则它就是满二叉树
2.2.2、完全二叉树
完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树
2.3、二叉树的性质
- 若规定根结点的层数为1,则一棵非空二叉树的第k层上最多有 2的k-1次方 (k>0) 个结点
- 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是 2的k次方-1 (k>=0)
- 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有 n0=n2+1
得出一个结论:任何一棵二叉树,叶子结点比度为2的节点多一个
4. 具有n个结点的完全二叉树的深度k为 上取整
- 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
(1)若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
(2)若2i+1<n,左孩子序号:2i+1,否则无左孩子
(3)若2i+2<n,右孩子序号:2i+2,否则无右孩子
二叉树的练习题
-
某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199 -
在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2 -
一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386 -
一棵完全二叉树的节点数为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12
答案:
1.B 2.A 3.B 4.B
2.4、二叉树的存储
二叉树的存储结构分为:顺序存储 和 类似于链表的链式存储。
这里,我们讲链式存储。
二叉树的链式存储是通过一个一个的节点引用起来的。常见的表示方式有二叉 和 三叉表示方式。
【二叉 : 孩子表示法;三叉 :孩子双亲表示法】
2.4.1、模拟创建二叉树
提前说明:二叉树的构建是一个非常复杂的过程,因为目前作者对二叉树的理解,还不是很深。所以,我们先会创建一个二叉树,但是这种创建方式,很LOW,只是为了应付前期使用,比较简单,不是正确的常用创建方式。
首先经过刚刚分析,二叉树是有一个一个节点构成的,所以我们就要创建节点
//首先经过刚刚分析,二叉树是有一个一个节点构成的,所以我们就要创建节点
class BTNode{public char val; //值域public BTNode left; //存储左孩子的引用public BTNode right; //存储右孩子的引用/*** 为什么不提供left 和 right的构造方法,这是因为我们创建节点的时候知道左右孩子的引用吗* 肯定是不知道的,所以不用提供* @param val*/public BTNode(char val){this.val = val;}
}public class BinaryTree {//创建一棵二叉树public BTNode creatBTN(){BTNode A = new BTNode('A');BTNode B = new BTNode('B');BTNode C = new BTNode('C');BTNode D = new BTNode('D');BTNode E = new BTNode('E');BTNode F = new BTNode('F');BTNode G = new BTNode('G');BTNode H = new BTNode('H');A.left = B;A.right = C;B.left = D;B.right = E;E.right = H;C.left = F;C.right = G;return A;}
}
debug调试看一下我们创建的对不对
说明创建的二叉树的对的,
上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解
2.5、二叉树的遍历
学习二叉树结构,最简单的方式就是遍历。所谓****遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础
2.5.1、前序遍历
NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点—>根的左子树—>根的右子树
2.5.2、中序遍历
LNR:中序遍历(Inorder Traversal)——根的左子树—>根节点—>根的右子树
2.5.3、后序遍历
LRN:后序遍历(Postorder Traversal)——根的左子树—>根的右子树—>根节点。
练习
写出下面二叉树的 前中后排序的 序列
前序遍历 ABDEHCFG
中序遍历 DBEHAFCG
后序遍历 DHEBFGCA
2.5.4、 代码实现二叉树的遍历
前序遍历
// 前序遍历public void preOrder(BTNode root){if(root == null){return;}System.out.print(root.val + " ");postOrde(root.left);postOrde(root.right);}
中序遍历
// 中序遍历public void inOrder(BTNode root){if(root == null){return;}inOrder(root.left);System.out.print(root.val + " ");inOrder(root.right);}
后序遍历
// 后序遍历public void postOrde(BTNode root){if(root == null){return;}postOrde(root.left);postOrde(root.right);System.out.print(root.val + " ");}
总的代码示例:
BinaryTree
//首先经过刚刚分析,二叉树是有一个一个节点构成的,所以我们就要创建节点
class BTNode{public char val; //值域public BTNode left; //存储左孩子的引用public BTNode right; //存储右孩子的引用/*** 为什么不提供left 和 right的构造方法,这是因为我们创建节点的时候知道左右孩子的引用吗* 肯定是不知道的,所以不用提供* @param val*/public BTNode(char val){this.val = val;}
}public class BinaryTree {//创建一棵二叉树public BTNode creatBTN(){BTNode A = new BTNode('A');BTNode B = new BTNode('B');BTNode C = new BTNode('C');BTNode D = new BTNode('D');BTNode E = new BTNode('E');BTNode F = new BTNode('F');BTNode G = new BTNode('G');BTNode H = new BTNode('H');A.left = B;A.right = C;B.left = D;B.right = E;E.right = H;C.left = F;C.right = G;return A;}// 前序遍历public void preOrder(BTNode root){if(root == null){return;}System.out.print(root.val + " ");postOrde(root.left);postOrde(root.right);}// 中序遍历public void inOrder(BTNode root){if(root == null){return;}preOrder(root.left);System.out.print(root.val + " ");preOrder(root.right);}// 后序遍历public void postOrde(BTNode root){if(root == null){return;}preOrder(root.left);preOrder(root.right);System.out.print(root.val + " ");}
}
Dome
public class Dome {public static void main(String[] args) {BinaryTree binaryTree = new BinaryTree();BTNode root = binaryTree.creatBTN();System.out.print("前序遍历:");binaryTree.preOrder(root);System.out.println();System.out.print("中序遍历:");binaryTree.inOrder(root);System.out.println();System.out.print("后序遍历:");binaryTree.postOrde(root);}
}
2.5.5、层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
选择题
【参考答案】
1.A
2.A
3.D
4.A
2.6、二叉树的基本操作
获取树中节点的个数
int cont = 0;// 获取树中节点的个数,以遍历的思路求解public int size1(BTNode root){if(root == null){return 0;}cont++;size1(root.left);size1(root.right);return cont;}// 获取树中节点的个数,以子问题的思路求解public int size2(BTNode root){if(root == null){return 0;}return size2(root.left) + size2(root.right) +1;}
求叶子节点的个数
// 获取叶子节点的个数, 以遍历的思路求解int cont1 = 0;public int getLeafNodeCount1(BTNode root){if(root == null){return 0;}if (root.left == null && root.right == null){cont1++;}getLeafNodeCount1(root.left);getLeafNodeCount1(root.right);return cont1;}// 获取叶子节点的个数 - 以子问题思路求解public int getLeafNodeCount2(BTNode root){if(root == null){return 0;}if(root.left == null && root.right == null){//左子树为null,右子树为null,说明前节点为叶子节点return 1;}return getLeafNodeCount2(root.left) + getLeafNodeCount2(root.right);}
获取第K层节点的个数 - 子问题思路
// 获取第K层节点的个数 - 子问题思路public int getKLevelNodeCount(BTNode root, int k){if(root == null){return 0;}if(k == 1){return 1;}return getKLevelNodeCount(root.left, k-1) + getKLevelNodeCount(root.right, k-1);}
获取二叉树的高度
// 获取二叉树的高度public int getHeight(BTNode root){if(root == null){return 0;}int left = getHeight(root.left);int right = getHeight(root.right);return left > right ? left + 1 : right + 1;}
检测值为value的元素是否存在
// 检测值为value的元素是否存在public BTNode find(BTNode root, char val){if(root == null){return null;}if(root.val == val){return root;}//上面的if没有进去说明没有找到,那就要取左树里面找BTNode ret = find(root.left,val);if(ret != null){return ret;}//左树没有找到,就在右树找ret = find(root.right,val);if(ret != null){return ret;}//左树和右树都没有找到,说明二叉树里面没有这个元素return null;}
注意:BTNode 里面存的是地址,所以在有元素的情况下返回得地址,没有元素的时候返回得才是null
所以我们在测试的时候可以使用下面的方式测试
判断一棵树是不是完全二叉树
// 判断一棵树是不是完全二叉树boolean isCompleteTree(BTNode root){if(root == null){//如果是一颗空树,那也是一棵完全二叉树return true;}//创建一个队列Queue<BTNode> queue = new LinkedList<>();//将头结点入队queue.offer(root);//判断队列为不为空while (!queue.isEmpty()){//如果队列不为空,就将栈顶元素出队列BTNode tmp = queue.poll();if(tmp != null){//如果二叉树不为空,就将左右子树入队queue.offer(tmp.left);queue.offer(tmp.right);}else {//如果二叉树为空,那就跳出循环break;}}//循环结束,就判断栈里面还有没有元素,如果有,那就说明不是完全二叉树//如果没有,那就说明 是完全二叉树while (!queue.isEmpty()){//将栈里面的元素出队列BTNode tmp = queue.poll();if(tmp != null){//判断是不是还有元素,如果没有元素,栈里面全是nullreturn false;}}return true;}
三、有关二叉树的OJ题
3.1、LeetCode 100. 相同的树
public boolean isSameTree(TreeNode p, TreeNode q) {if((p != null && q == null) || (p == null && q != null)){return false;}else if(p == null && p == null){return true;}else if(p.val != q.val){//代码走到这里,说明p 和 q 都不为空return false;}//代码走到这里说明 q != null && p != null && q.val == p.valreturn isSameTree(p.left,q.left) && isSameTree(p.right,q.right);}
3.2、LeetCode 572. 另一棵树的子树
public boolean isSameTree(TreeNode p, TreeNode q) {//判断两棵树是否相同if((p != null && q == null) || (p == null && q != null)){return false;}else if(p == null && p == null){return true;}else if(p.val != q.val){//代码走到这里,说明p 和 q 都不为空return false;}//代码走到这里说明 q != null && p != null && q.val == p.valreturn isSameTree(p.left,q.left) && isSameTree(p.right,q.right);}public boolean isSubtree(TreeNode root, TreeNode subRoot) {if(root == null || subRoot == null){return false;}//判断两棵树是否相同if(isSameTree(root, subRoot)){return true;}//如果不相同,就判断subRoot是不是root的左子树if(isSubtree(root.left, subRoot)){return true;}//如果不是左子树,就判断subRoot是不是root的右子树if(isSubtree(root.right, subRoot)){return true;}//如果都不是,那就说明subRoot不是root的子树return false;}
3.3、LeetCode 110. 平衡二叉树
//求二叉树的高度
public int hight(TreeNode root){if(root == null){return 0;}int left = hight(root.left);int right = hight(root.right);return left > right ? left + 1 : right +1;}public boolean isBalanced(TreeNode root) {//空树也是平衡二插树if(root == null){return true;}//求左树的高度int leftHight = hight(root.left);//求右树的高度int rightHight = hight(root.right);//左树和右树的高度差不能大于1//并且左树是平衡的,右树也是平衡的return Math.abs(leftHight - rightHight) <=1 && isBalanced(root.left) && isBalanced(root.right);}
相关文章:

Java - 数据结构,二叉树
一、什么是树 概念 树是一种非线性的数据结构,它是由n(n>0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点: 1、有…...

模拟QQ登录-课后程序(JAVA基础案例教程-黑马程序员编著-第十一章-课后作业)
【案例11-3】 模拟QQ登录 【案例介绍】 1.案例描述 QQ是现实生活中常用的聊天工具,QQ登录界面看似小巧、简单,但其中涉及的内容却很多,对于初学者练习Java Swing工具的使用非常合适。本案例要求使用所学的Java Swing知识,模拟实…...

【壹】嵌入式系统硬件基础
随手拍拍💁♂️📷 日期: 2023.2.28 地点: 杭州 介绍: 日子像旋转毒马🐎,在脑海里转不停🤯 🌲🌲🌲🌲🌲 往期回顾 🌲🌲🌲…...

当参数调优无法解决kafka消息积压时可以这么做
今天的议题是:如何快速处理kafka的消息积压 通常的做法有以下几种: 增加消费者数增加 topic 的分区数,从而进一步增加消费者数调整消费者参数,如max.poll.records增加硬件资源 常规手段不是本文的讨论重点或者当上面的手段已经使…...

Java线程池源码分析
Java 线程池的使用,是面试必问的。下面我们来从使用到源码整理一下。 1、构造线程池 通过Executors来构造线程池 1、构造一个固定线程数目的线程池,配置的corePoolSize与maximumPoolSize大小相同, 同时使用了一个无界LinkedBlockingQueue存…...

手撕八大排序(下)
目录 交换排序 冒泡排序: 快速排序 Hoare法 挖坑法 前后指针法【了解即可】 优化 再次优化(插入排序) 迭代法 其他排序 归并排序 计数排序 排序总结 结束了上半章四个较为简单的排序,接下来的难度将会大幅度上升&…...

SAP 详细解析SCC4
事务代码:SCC4,选择一个客户端,点击进入,如图: 一、客户端角色 客户控制:客户的角色(生产性,测试,...) 此属性表示 R/3 系统中的客户端角色。其中可能包括…...

java异常分类和finally代码块中return语句的影响
首先看一下java中异常相关类的继承关系: 引用 1、分类 异常可以分为受查异常和非受查异常,Error和RuntimeException及其所有的子类都是非受查异常,其他的是受查异常。 两者的区别主要在: 受检的异常是由编译器(编译…...

【链表OJ题(二)】链表的中间节点
📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:数据结构 🎯长路漫漫浩浩,万事皆有期待 文章目录链表OJ题(二)1. 链表…...

【强烈建议收藏:MySQL面试必问系列之并发事务锁专题】
一.知识回顾 上节课我们一起学习了MySQL面试必问系列之事务,没有学习的同学可以看一下上一篇文章,肯定对你会有帮助,学习过的同学肯定知道,上节课我们留了一个小尾巴,这个小尾巴是什么呢?就是没有详细展开…...

Linux下使用Makefile实现条件编译
在Linux系统下Makefile和C/C语言都有提供条件选择编译的语法,就是在编译源码的时候,可以选择性地编译指定的代码。这种条件选择编译的使用场合有好多,例如我们开发一个兼容标准版本与定制版本兼容的项目,那么,一些与需…...

java 应用cpu飙升(超过100%)故障排查
前言害。。。昨天刚写完一份关于jvm问题排查相关的博客,今天线上项目就遇到了一个突发问题。现象是用户反映系统非常卡,无法操作。然后登录服务器查看发现cpu 一直100%以上。具体排查步骤:1,首先top命令查看服务器cpu等情况&#…...

光学设计软件Ansys的Lumerical 2023版本下载与安装使用
文章目录前言一、许可管理工具安装二、许可管理器配置三、Lumerical安装四、工具使用配置总结前言 Lumerical是一款功能强大的软件,用于设计和分析从组件到系统阶段的光子学和电磁学。这个版本的Lumerical改进了电子和光子学设计工具,用于复杂光子学&am…...

Java 异常
文章目录1. 异常概述2. JVM 的默认处理方案3. 异常处理之 try...catch4. Throwable 的成员方法5. 编译异常和运行异常的区别6. 异常处理之 throws7. 自定义异常8. throws 和 throw 的区别1. 异常概述 异常就是程序出现了不正常的情况。 ① Error:严重问题ÿ…...

JavaSE学习笔记day17
零、 复习昨日 File: 通过路径代表一个文件或目录 方法: 创建型,查找类,判断类,其他 IO 输入& 输出字节&字符 try-catch代码 一、作业 给定路径删除该文件夹 public static void main(String[] args) {deleteDir(new File("E:\\A"));}// 删除文件夹public s…...

【项目】Vue3+TS 动态路由 面包屑 查询重置 列表
💭💭 ✨:【项目】Vue3TS 动态路由 面包屑 查询重置 列表 💟:东非不开森的主页 💜: 热烈的不是青春,而是我们💜💜 🌸: 如有错误或不足之处࿰…...
前脚背完这些接口自动化测试面试题,后脚就进了字节测试岗
1、请结合你熟悉的项目,介绍一下你是怎么做测试的? -首先要自己熟悉项目,熟悉项目的需求、项目组织架构、项目研发接口等 -功能 接口 自动化 性能 是怎么处理的? -第一步: 进行需求分析,需求评审&#…...
termux 安装centos
相关链接 centos官网rootfs制作其他人提供的安装脚本centos镜像列表其他人提供的安装脚本的说明 如果想使用老版本的centos7跟着上面链接5走就行 如果想用新系统比如centos9 stream,就跟我来 Q:为什么要装新系统? A:旧系统太多软件已过时,升级费时费…...

从菜鸟程序员到高级架构师,竟然是因为这个字final
final实现原理 简介 final关键字,实际的含义就一句话,不可改变。什么是不可改变?就是初始化完成之后就不能再做任何的修改,修饰成员变量的时候,成员变量变成一个常数;修饰方法的时候,方法不允…...

【vulhub漏洞复现】CVE-2018-2894 Weblogic任意文件上传漏洞
一、漏洞详情影响版本weblogic 10.3.6.0、weblogic 12.1.3.0、weblogic 12.2.1.2、weblogic 12.2.1.3WebLogic是美国Oracle公司出品的一个application server,确切的说是一个基于JAVAEE架构的中间件,WebLogic是用于开发、集成、部署和管理大型分布式Web应…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...

中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...