LeNet
概念
代码
model
import torch.nn as nn
import torch.nn.functional as Fclass LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__() # super()继承父类的构造函数self.conv1 = nn.Conv2d(3, 16, 5)self.pool1 = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(16, 32, 5)self.pool2 = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(32*5*5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x): x = F.relu(self.conv1(x)) # input(3, 32, 32) output(16, 28, 28)x = self.pool1(x) # output(16, 14, 14)x = F.relu(self.conv2(x)) # output(32, 10, 10)x = self.pool2(x) # output(32, 5, 5)x = x.view(-1, 32*5*5) # output(32*5*5)x = F.relu(self.fc1(x)) # output(120)x = F.relu(self.fc2(x)) # output(84)x = self.fc3(x) # output(10)return x
forward:定义正向传播的过程。
ReLU:激活哈数
观察网络中的参数传递:发现传递的都是channel通道数,最后output在softmax函数里展开的也是展开的通道数。
train
import torch
import torchvision
import torch.nn as nn
from model import LeNet
import torch.optim as optim
import torchvision.transforms as transformsdef main():transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])# 50000张训练图片# 第一次使用时要将download设置为True才会自动去下载数据集train_set = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)train_loader = torch.utils.data.DataLoader(train_set, batch_size=36,shuffle=True, num_workers=0)# 10000张验证图片# 第一次使用时要将download设置为True才会自动去下载数据集val_set = torchvision.datasets.CIFAR10(root='./data', train=False,download=False, transform=transform)val_loader = torch.utils.data.DataLoader(val_set, batch_size=5000,shuffle=False, num_workers=0)val_data_iter = iter(val_loader)val_image, val_label = next(val_data_iter)# classes = ('plane', 'car', 'bird', 'cat',# 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')net = LeNet()loss_function = nn.CrossEntropyLoss()optimizer = optim.Adam(net.parameters(), lr=0.001)for epoch in range(5): # loop over the dataset multiple timesrunning_loss = 0.0for step, data in enumerate(train_loader, start=0):# get the inputs; data is a list of [inputs, labels]inputs, labels = data# zero the parameter gradientsoptimizer.zero_grad()# forward + backward + optimizeoutputs = net(inputs)loss = loss_function(outputs, labels)loss.backward()optimizer.step()# print statisticsrunning_loss += loss.item()if step % 500 == 499: # print every 500 mini-batcheswith torch.no_grad():outputs = net(val_image) # [batch, 10]predict_y = torch.max(outputs, dim=1)[1]accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)print('[%d, %5d] train_loss: %.3f test_accuracy: %.3f' %(epoch + 1, step + 1, running_loss / 500, accuracy))running_loss = 0.0print('Finished Training')save_path = './Lenet.pth'torch.save(net.state_dict(), save_path)if __name__ == '__main__':main()
predict.py
import torch
import torchvision.transforms as transforms
from PIL import Imagefrom model import LeNetdef main():transform = transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')net = LeNet()net.load_state_dict(torch.load('Lenet.pth'))im = Image.open('1.jpg').convert('RGB')im = transform(im) # [C, H, W]im = torch.unsqueeze(im, dim=0) # [N, C, H, W]with torch.no_grad():outputs = net(im)predict = torch.max(outputs, dim=1)[1].numpy()# predict = torch.softmax(outputs,dim=1)# print(predict)# tensor([[9.9884e-01, 1.9386e-04, 3.8757e-04, 2.0671e-05, 2.5372e-04, 3.6199e-05,# 3.7643e-05, 1.7624e-04, 2.0138e-05, 3.4801e-05]])print(classes[int(predict)])if __name__ == '__main__':main()
知识点:
增加新的维度:
im = torch.unsqueeze(im, dim=0) # [N, C, H, W]
predict = torch.max(outputs, dim=1)[1].numpy():
这一行代码使用
torch.max()
函数找到outputs
张量在第一个维度上的最大值,并返回最大值和对应的索引。dim=1
表示在第一个维度上进行最大值的计算,即对每个样本的输出进行比较。[1]
表示返回最大值对应的索引。最后,.numpy()
将结果转换为NumPy数组。更换:
predict = torch.softmax(outputs,dim=1)
print:tensor([[9.9884e-01, 1.9386e-04, 3.8757e-04, 2.0671e-05, 2.5372e-04, 3.6199e-05,
3.7643e-05, 1.7624e-04, 2.0138e-05, 3.4801e-05]])
Pytorch使用
相关文章:

LeNet
概念 代码 model import torch.nn as nn import torch.nn.functional as Fclass LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__() # super()继承父类的构造函数self.conv1 nn.Conv2d(3, 16, 5)self.pool1 nn.MaxPool2d(2, 2)self.conv2 nn.Conv2d(16…...

JavaScript 简单理解原型和创建实例时 new 操作符的执行操作
function Person(){// 构造函数// 当函数创建,prototype 属性指向一个原型对象时,在默认情况下,// 这个原型对象将会获得一个 constructor 属性,这个属性是一个指针,指向 prototype 所在的函数对象。 } // 为原型对象添…...

生成对抗网络——研讨会
时隔一年,再跟着李沐大师学习了GAN之后,仍旧没能在离散优化中实现通用的应用,实在惭愧,借着组内研讨会的机会,再队GAN的前世今生做一个简单的综述。 GAN产生的背景 目前与GAN相关的应用 去reddit社区的机器学习板块…...

Ubuntu 20.04 安装 mysql8 LTS
Ubuntu 20.04 安装 mysql8 LTS sudo apt-get update sudo apt-get install mysql-server -y mysql --version mysql Ver 8.0.35-0ubuntu0.20.04.1 for Linux on x86_64 ((Ubuntu)) Ubuntu20.04 是自带了 MySQL8. 几版本的,低于 20.04 则默认安装是 MySQL5.7.33…...
蓝桥杯:货物摆放
小蓝有一个超大的仓库,可以摆放很多货物。 现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、宽、高。 小蓝希望所有的货物最终摆成一个大…...

ganache部署智能合约报错VM Exception while processing transaction: invalid opcode
这是因为编译的字节码不正确,ganache和remix编译时需要选择相同的evm version 如下图所示: remix: ganache: 确保两者都选择london或者其他evm,只要确保EVM一致就可以正确编译并部署, 不会再出现VM Exception while processing…...

金融银行业更适合申请哪种SSL证书?
在当今数字化时代,金融行业的重要性日益增加。越来越多的金融交易和敏感信息在线进行,金融银行机构必须采取必要的措施来保护客户数据的安全。SSL证书作为一种重要的安全技术工具,可以帮助金融银行机构加密数据传输,验证网站身份&…...

文心一言API(高级版)使用
文心一言API高级版使用 一、百度文心一言API(高级版)二、使用步骤1、接口2、请求参数3、请求参数示例4、接口 返回示例 三、 如何获取appKey和uid1、申请appKey:2、获取appKey和uid 四、重要说明 一、百度文心一言API(高级版) 基于百度文心一言语言大模型的智能文本对话AI机器…...

C# 任务并行类库Parallel调用示例
写在前面 Task Parallel Library 是微软.NET框架基础类库(BCL)中的一个,主要目的是为了简化并行编程,可以实现在不同的处理器上并行处理不同任务,以提升运行效率。Parallel常用的方法有For/ForEach/Invoke三个静态方法…...

2024年江苏省职业院校技能大赛信息安全管理与评估 第二阶段学生组(样卷)
2024年江苏省职业院校技能大赛信息安全管理与评估 第二阶段学生组(样卷) 竞赛项目赛题 本文件为信息安全管理与评估项目竞赛-第二阶段样题,内容包括:网络安全事件响应、数字取证调查、应用程序安全。 本次比赛时间为180分钟。 …...

飞天使-linux操作的一些技巧与知识点3
http工作原理 http1.0 协议 使用的是短连接,建立一次tcp连接,发起一次http的请求,结束,tcp断开 http1.1 协议使用的是长连接,建立一次tcp的连接,发起多次http的请求,结束,tcp断开ngi…...

Appium获取toast方法封装
一、前置说明 toast消失的很快,并且通过uiautomatorviewer也不能获取到它的定位信息,如下图: 二、操作步骤 toast的class name值为android.widget.Toast,虽然toast消失的很快,但是它终究是在Dom结构中出现过&…...
Google Guava简析
Google Guava 是Google开源的一个Java类库,对基本类库做了扩充。感觉最大的价值点在于其 集合类、Cache和String工具类。 github项目地址:GitHub - google/guava: Google core libraries for Java github文档地址:Home google/guava Wiki …...

反序列化漏洞详解(二)
目录 pop链前置知识,魔术方法触发规则 pop构造链解释(开始烧脑了) 字符串逃逸基础 字符减少 字符串逃逸基础 字符增加 实例获取flag 字符串增多逃逸 字符串减少逃逸 延续反序列化漏洞(一)的内容 pop链前置知识,魔术方法触…...

React全站框架Next.js使用入门
Next.js是一个基于React的服务器端渲染框架,它可以帮助我们快速构建React应用程序,并具有以下优势: 1. 支持服务器端渲染,提高页面渲染速度和SEO; 2. 自带webpack开发环境,实现即插即用的特性;…...

【操作系统笔记】-文件系统
引言 之前已经学习过数据在内存中是如何表示,如何存储,但是这些存储在PC断电后数据便消失。因此我们需要一个可以持久化存储并且容量远远大于内存的结构,这一篇我们将学习,文件是如何被组织和操作的,这是一个操作系统…...

第二十一章 网络通信
计算机网络实现了堕胎计算机间的互联,使得它们彼此之间能够进行数据交流。网络应用程序就是再已连接的不同计算机上运行的程序,这些程序借助于网络协议,相互之间可以交换数据,编写网络应用程序前,首先必须明确网络协议…...

【漏洞复现】万户协同办公平台ezoffice wpsservlet接口存在任意文件上传漏洞 附POC
漏洞描述 万户ezOFFICE集团版协同平台以工作流程、知识管理、沟通交流和辅助办公四大核心应用 万户ezOFFICE协同管理平台是一个综合信息基础应用平台。 万户协同办公平台ezoffice wpsservlet接口存在任意文件上传漏洞。 免责声明 技术文章仅供参考,任何个人和组织使用网络应…...
【uniapp】小程序中input输入框的placeholder-class不生效解决办法
问题描述 uniapp微信小程序,使用input组件时,想要改变提示词 placeholder 的样式,但是使用placeholder-class 改变不了 如下: <input type"text" placeholder"搜索" placeholder-class"placeholde…...

SimplePIR——目前最快单服务器匿踪查询方案
一、介绍 这篇论文旨在实现高效的单服务器隐私信息检索(PIR)方案,以解决在保护用户隐私的同时快速检索数据库的问题。为了实现这一目标,论文提出了两种新的PIR方案:SimplePIR和DoublePIR。这两种方案的实现基于学习与错…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...

【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...