利用Python和OpenCV实现将图像识别为Excel表格的便捷方法
当今社会,图像识别技术的发展为我们提供了许多便利,比如将图像中的文本信息转化为可编辑的电子表格。在本文中,我们将介绍如何利用Python结合OpenCV和pytesseract库,来实现将图像识别为Excel表格的过程。
首先,我们需要安装所需的库,包括OpenCV、pytesseract和openpyxl。这些库分别用于图像处理、文本识别和Excel表格操作。接下来,我们将通过以下步骤来完成整个过程:
1. 读取图像:使用OpenCV库读取待识别的图像文件。
2. 图像预处理:利用OpenCV进行图像预处理,比如灰度化、二值化等操作,以便提高后续的文本识别准确度。
3. 文本识别:利用pytesseract库对预处理后的图像进行文本识别,将图像中的文字信息提取出来。
4. 创建Excel表格:使用openpyxl库创建一个新的Excel表格文件。
5. 将识别结果写入Excel表格:将文本识别得到的内容按照表格的形式写入到Excel表格中,以便进一步处理和编辑。
下面是一个简单的示例代码,演示了如何利用Python结合上述库来实现图像识别为Excel表格的过程:
import cv2
import pytesseract
from PIL import Image
import openpyxl
# 读取图像
image = cv2.imread('input_image.jpg')
# 使用OpenCV进行图像预处理(例如灰度化、二值化等)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
threshold = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# 保存预处理后的图像
cv2.imwrite('processed_image.jpg', threshold)
# 使用pytesseract进行图像识别
data = pytesseract.image_to_string(Image.open('processed_image.jpg'),)
# 创建Excel表格
workbook = openpyxl.Workbook()
sheet = workbook.active
# 将识别结果写入Excel表格
rows = data.split('\n')
for i, row in enumerate(rows):
cells = row.split('\t')
for j, cell in enumerate(cells):
sheet.cell(row=i+1, column=j+1).value = cell
# 保存Excel表格
workbook.save('output.xlsx')
```
在这个示例代码中,我们使用了OpenCV对图像进行了预处理,然后利用pytesseract进行了文本识别,并将识别结果写入了新创建的Excel表格中。值得注意的是,图像识别的准确性可能会受到多种因素的影响,比如图像质量、文字大小和字体等因素。因此在实际应用中,可能需要根据具体情况进行调整和优化。
总之,利用Python结合OpenCV和pytesseract库将图像识别为Excel表格,为我们提供了一种便捷的方式来处理图像中的文本信息。通过不断的优化和改进,图像识别技术将为我们的生活和工作带来更多便利和可能性。
相关文章:
利用Python和OpenCV实现将图像识别为Excel表格的便捷方法
当今社会,图像识别技术的发展为我们提供了许多便利,比如将图像中的文本信息转化为可编辑的电子表格。在本文中,我们将介绍如何利用Python结合OpenCV和pytesseract库,来实现将图像识别为Excel表格的过程。 首先,我们需…...
mysql:查看一个表的索引信息
可以使用命令SHOW INDEX FROM table_name;查看一个表的索引信息,例如:...
12月11日作业
完善对话框,点击登录对话框,如果账号和密码匹配,则弹出信息对话框,给出提示”登录成功“,提供一个Ok按钮,用户点击Ok后,关闭登录界面,跳转到其他界面 如果账号和密码不匹配…...
HTTP协议在Linux上进行数据库访问代码示例
在Linux上使用HTTP协议进行数据库访问通常涉及到使用库如requests来进行HTTP请求,以及使用json或类似的库来处理返回的数据。下面是一个使用Python的简单示例,展示如何通过HTTP协议在Linux上访问数据库。 首先,你需要确保你的Linux系统上已经…...
CS.DEEP | 基于 openGauss 实现的计算机论坛项目
前言 本项目是一个基于前后端分离(后端:SpringBoot openGauss,前端:Vue3 Element Plus)实现的开源计算机博客论坛项目,旨在为用户提供一个方便、高效的博客发布和交流平台。 本平台支持 Markdown 编辑&…...
【ArcGIS Pro微课1000例】0053:基于SQL Server创建与启用地理数据库
之前的文章有讲述基于SQL Server创建企业级地理数据库,本文讲述在SQL Server中创建常规的关心数据库,然后在ArcGIS Pro中将其启用,转换为企业级地理数据库。 1. 在SQL Server中创建数据库** 打开SQL Server 2019,连接到数据库服务器。 展开数据库连接,在数据库上右键→新…...
快速排序(2)
一、快速排序有三种方法:hoare版本、挖坑法、前后指针版本 但是三种方法的核心思想都是一样的,都是将该数组分为左右两半递归式的排序。 1.hoare版本 该方法是先保存a[keyi]位置的值,然后右边先开动找小,找到小后,左…...
持续集成和持续交付
引言 CI/CD 是一种通过在应用开发阶段引入自动化来频繁向客户交付应用的方法。CI/CD 的核心概念是持续集成、持续交付和持续部署。作为一种面向开发和运维团队的解决方案,CI/CD 主要针对在集成新代码时所引发的问题(亦称:“集成地狱”&#…...
C#、JavaScript、VBScript解析JSON数据源码
本示例使用设备:WIFI/TCP/UDP/HTTP协议RFID液显网络读卡器可二次开发语音播报POE-淘宝网 (taobao.com) C#解析JSON数据 string dispstr "{" getChinesecode("扫码") ":}" data; //显示信息,注意中文汉字一定要转换为设备能显…...
JVM面试连环炮:你准备好迎接挑战了吗?
在Java开发领域,JVM面试一直是一个热门话题。作为一名优秀的开发者,你是否已经准备好迎接这场挑战了呢?今天,我们就来深度解析一下JVM面试的热点问题,帮助你更好地应对面试,一举拿下offer! 1、…...
Ansible通过kubernetes.core.k8s_info和kubernetes.core.k8s访问OCP
文章目录 环境OCPClient(Ansible控制节点) 步骤准备工作在client端配置ssh免密登录OCP端在client端安装Ansible kubernetes.core.k8s_info第1次尝试在OCP端安装python和pip3在OCP端安装kubernetes在OCP端安装PyYAML第2次尝试在OCP端配置config文件第3次尝…...
vscode汉化
安装插件 Chinese (Simplified) (简体中文) Language Pack for 重新打开,若还是没有汉化: 【CtrlShiftp】 输入“configure display language”,回车键 选择刚刚安装的 中文(简体)...
美易投资:美国圣诞树价格飙升,涨价的问题所在?
美国圣诞树价格飙升,商家称“拜登经济学”是导致涨价的罪魁祸首 随着圣诞节的临近,美国各地的家庭开始准备庆祝这一传统佳节。然而,今年美国的圣诞树价格却呈现出了明显的上涨趋势。据一些商家反映,这主要是由于“拜登经济学”所致…...
国内外聊天AI大比拼,你知道几个?一键了解最火聊天AI应用!
国内类ChatGPT的AI工具一网打尽 2022年,是一个不平凡的一年。ChatGPT迅速崭露头角,成为备受瞩目的热门话题。特别是在OpenAI发布了基于GPT-3.5模型的ChatGPT版本后,这一产品因其卓越的对话能力和广泛的应用潜力,很快引起了大众的…...
C++STL的vector模拟实现
文章目录 前言成员变量成员函数构造函数push_backpop_backinserterase析构函数拷贝构造 前言 成员变量 namespace but {template<class T>class vector{public:typedef T* iterator;private:iterator _start;iterator _finish;iterator _end_of_storage;}; }我们之前实…...
openssl 常用命令 pkcs12
openssl pkcs12 openssl pkcs12 官方文档 1. 描述 The pkcs12 command allows PKCS#12 files (sometimes referred to as PFX files) to be created and parsed. PKCS#12 files are used by several programs including Netscape, MSIE and MS Outlook. pkcs12 命令是用来创…...
2017下半年软工(桥接模式)
题目——桥接模式(抽象调用实现部分) package org.example.桥接模式;/*** 桥接模式的核心思想是将抽象部分与它的实现部分分离,使它们可以独立变化,就是说你在实现部分:WinImp、LinuxImp基础上还能加上RedHatImp&#…...
Hive 浅析
Hive是一个简单的LUA沙盒,除了基本的LUA解释器的功能以外,还提供了诸如热加载等功能。 了解HIVE的工作原理有利于了解Lua虚拟机的底层实现机理。 本文从是什么-怎么用-为什么三个维度介绍HIVE。 Hive Hive是什么 hive是一个简单的LUA应用框架,目前基于…...
C 语言中,结构体「.」与「->」的区别
简单来说 「 」的左边是结构体名字时用点符号「.」 「 」的左边是结构体指针时名字时用箭头「->」 对于要读取结构体种的数据时,有下面三种写法,操作是等价的。 struct ListNode a;struct ListNode *p1 &a;/*三种写法*/a.element 2333;p1->e…...
【Java Web学习笔记】5 - XML
项目代码 https://github.com/yinhai1114/JavaWeb_LearningCode/tree/main/xml 零、在线文档 XML系列教程 一、XML引出 1.为什么需要XML 1.需求1 :两个程序间进行数据通信? 2.需求2:给一台服务器,做一个配置文件,当服务器程序启动时,去…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
