智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.斑马算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用斑马算法进行无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n m∗n个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2(3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=m∗n∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.斑马算法
斑马算法原理请参考:https://blog.csdn.net/u011835903/article/details/130565746
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
斑马算法参数如下:
%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升,表明斑马算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.斑马算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…...

deepface:实现人脸的识别和分析
deepface介绍 deepface能够实现的功能 人脸检测:deepface 可以在图像中检测出人脸的位置,为后续的人脸识别任务提供基础。 人脸对齐:为了提高识别准确性,deepface 会将检测到的人脸进行对齐操作,消除姿态、光照和表…...
Pytorch当中nn.Identity()层的作用
在深度学习中,nn.Identity() 是 PyTorch 中的一个层(layer)。它实际上是一个恒等映射,不对输入进行任何变换或操作,只是简单地将输入返回作为输出。 通常在神经网络中,各种层(比如全连接层、卷…...

linux课程第二课------命令的简单的介绍2
作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 🎂 作者介绍: 🎂🎂 🎂 🎉🎉🎉…...

【PTA刷题】 求子串(代码+详解)
【PTA刷题】 求子串(代码详解) 题目 请编写函数,求子串。 函数原型 char* StrMid(char *dst, const char *src, int idx, int len);说明:函数取源串 src 下标 idx 处开始的 len 个字符,保存到目的串 dst 中,函数值为 dst。若 len…...

初识Dockerfile
Dockerfile:创建镜像,创建自定义的镜像 包括配置文件,挂载点,对外暴露的端口,设置环境变量 Docker的创建镜像方式: 1.基于已经镜像进行创建 根据官方号已提供的镜像源,创建镜像,然…...
Python入门第2篇(pip、字符串、方法、json、io操作)
目录 pip包管理器 字符串 方法 json 文件操作 pip包管理器 包管理器类似.NET下的nuget,主要用于管理引用依赖项。 安装Python的时候,已经默认安装了pip包管理器,因此无需单独安装 cmd,输入:pip --version 显示…...

IntelliJ IDEA 智能(AI)编码工具插件
文章目录 通义灵码-阿里CodeGeeX-清华大学智谱AIBitoAmazon CodeWhisperer-亚马逊GitHub Copilot - 买不起CodeiumAIXcoder 仅仅自动生成单元测试功能 TestMe插件(免费)仅仅是模板填充,不智能。 Squaretest插件(收费)…...

Java编程中通用的正则表达式(二)
正则表达式,又称正则式、规则表达式、正规表达式、正则模式或简称正则,是一种用来匹配字符串的工具。它是一种字符串模式的表示方法,可以用来检索、替换和验证文本。正则表达式是一个字符串,它描述了一些字符的组合,这…...

[GPT]Andrej Karpathy微软Build大会GPT演讲(上)--GPT如何训练
前言 OpenAI的创始人之一,大神Andrej Karpthy刚在微软Build 2023开发者大会上做了专题演讲:State of GPT(GPT的现状)。 他详细介绍了如何从GPT基础模型一直训练出ChatGPT这样的助手模型(assistant model)。作者不曾在其他公开视频里看过类似的内容,这或许是OpenAI官方…...

接口测试-Jmeter使用
一、线程组 1.1 作用 线程组就是控制Jmeter用于执行测试的一组用户 1.2 位置 右键点击‘测试计划’-->添加-->线程(用户)-->线程组 1.3 特点 模拟多人操作线程组可以添加多个,多个线程组可以并行或者串行取样器(请求)和逻辑控制器必须依赖线程组才能…...

十大排序(含java代码)
一、冒泡排序 冒泡排序就是把小的元素往前调或者把大的元素往后调,比较是相邻的两个元素比较,交换也发生在这两个元素之间。(类似于气泡上浮过程) 动图演示 代码实现 int a[]{2,5,3,7,4,8};for (int i 0; i < a.length; i) {f…...

js基础:简介、变量与数据类型、流程循环控制语句、数组及其api
JS基础:简介、变量与数据类型、流程循环控制语句、数组及其api 一、简介 1、js概述 tip:JavaScript是什么? 有什么作用? JavaScript(简称JS)是一种轻量级的、解释性的编程语言,主要用于在网页…...

kubeadm搭建单master多node的k8s集群--小白文,图文教程
参考文献 K8S基础知识与集群搭建 kubeadm搭建单master多node的k8s集群—主要参考这个博客,但是有坑,故贴出我自己的过程,坑会少很多 注意: 集群配置是:一台master:zabbixagent-k8smaster,两台…...
CSS层叠样式表一
1,CSS简介 1.1 CSS-网页的美容师 CSS的主要使用场景就是美化网页,布局页面的 CSS也是一种标记语言 CSS主要用于设置HTML页面中的文本内容(字体,大小,对齐方式等)、图片的外形(宽高、边框样式…...

【等保】安徽省等保测评机构名单看这里!
随着互联网技术的飞速发展,网络安全已成为国家安全、社会稳定的重要保障,因此我们严格贯彻落实等保政策。等保测评机构在等保制度执行过程中发挥着重要的作用。现在我们就来看看安徽省等保测评机构有哪些? 【等保】安徽省等保测评机构名单看…...

学习IO的第八天
作业:使用信号灯循环输出ABC sem.c #include <head.h>union semun {int val; /* Value for SETVAL */struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */unsigned short *array; /* Array for GETALL, SETALL */struct seminf…...
【clickhouse】ck远程访问另一个ck
代码实现 CREATE TABLE tmp.tbsas remote( host, database_name, table_name, user, password );就相当于从ck1直接请求ck2 参考文档 https://github.com/ClickHouse/ClickHouse/issues/15295 https://clickhouse.com/docs/zh/sql-reference/table-functions/remote...

Django的logging-日志模块的简单使用方法
扩展阅读: Python-Django的“日志功能-日志模块(logging模块)-日志输出”的功能详解 现在有下面的Python代码: # -*- coding: utf-8 -*-def log_out_test(content_out):print(content_out)content1 "i love you01" log_out_test(content1)现…...
argparse --- 命令行选项、参数和子命令解析器
3.2 新版功能. 源代码: Lib/argparse.py 教程 此页面包含该 API 的参考信息。有关 Python 命令行解析更细致的介绍,请参阅 argparse 教程。 argparse 模块可以让人轻松编写用户友好的命令行接口。 程序定义它需要哪些参数,argparse 将会知…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...