[C/C++]——内存管理
学习C/C++的内存管理
- 前言:
- 一、C/C++的内存分布
- 二、C语言中动态内存管理方式
- 三、C++中动态内存管理方式
- 3.1、new/delete操作符
- 3.1.2、new/delete操作内置类型
- 3.1.3、new/delete操作自定义类型
- 3.2、认识operator new和operator delete函数
- 3.3、了解new和delete的实现原理
- 3.3.1、内置类型
- 3.3.2、自定义类型
- 3.3.3、new和delete的实现原理
- 3.4、学习定位new(placement-new)
- 四、动态内存管理常规面试题
- 4.1 malloc/free和new/delete的区别
- 4.2 内存泄漏
- 4.2.1什么是内存泄漏,内存泄漏的危害
- 4.2.2 内存泄漏分类
- 4.2.3 如何检测内存泄漏
- 4.2.4 如何避免内存泄漏
前言:
c++的学习是一个爬坡的过程,希望大家坚持下去。
一、C/C++的内存分布
为了更直观的学习,我直接展示案例。大家多深入思考,一个案例会了,别的题目也就会了。
1代表代码段;2、3代表数据段;4代表堆区;5代表栈区。
value在哪里:数据段
values在哪里:数据段
values1在哪里:数据段
values2在哪里:栈区
arr在哪里:栈区
arr1在哪里:栈区 ; *arr1在哪里:栈区。
ptr在哪里:栈区 ;*ptr在哪里:代码段。
ptr1 在哪里:栈区 ;*ptr1 在哪里:堆区 。
结论:
- 内核空间:操作系统内核-kernel,受硬件保护,用户不能进行读写,用于执行各种机器指令。
- 栈:非静态局部变量/函数参数/返回值等等,栈是向下增长的
- 内存映射段:是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享的共享内存,做进程间通信。
- 堆:用于程序运行时动态内存分配,堆是可以上增长的。
- 数据段(静态区):存储全局数据和静态数据
- 代码段(常量区):存储可执行的代码/只读常量
二、C语言中动态内存管理方式
下面我将回顾一下C语言的内存管理方式,更详细的信息可以看我以前的文章C语言动态内存管理。
涉及四个主要函数,分别为malloc、calloc、realloc、free
- malloc:动态申请一块内存空间,不进行初始化,函数原型为void* malloc(size_t size),在使用malloc函数的返回值是要进行强制类型转换。
- calloc:动态申请内存空间,并将申请的空间的内容初始化为0。函数原型为:void* calloc(size_t num, size_tsize),num表示申请内存空间的块数,size表示每块空间的大小。
- realloc:调整一块已经申请的内存空间的大小,函数原型为void* realloc(void* ptr, size_t size),其中ptr指向要调整大小的内存空间、size表示调整后的内存空间大小。
- free:释放动态申请的内存空间。
三、C++中动态内存管理方式
C++兼容C语言,所以C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。
malloc不方便解决动态申请的自定义类型对象的初始化问题。
new是为了解决动态申请的自定义类型对象的初始化问题。
3.1、new/delete操作符
在C++中,可以使用new来申请堆区内存空间,采用delete释放堆区内存空间。
new的使用语法为:
- 申请单块内存空间不初始化:数据类型*ptr = new 数据类型
- 申请数组空间不初始化:数据类型*ptr = new 数据类型[数据量]
- 申请单块内存空间并初始化:数据类型 *ptr = new 数据类型 (初始化值)
- 申请数组空间并初始化:数据类型 *ptr = new数据类型{初始化值1, 初始化值2, … }
delete的使用语法为: - 释放单个内存空间:delete 指向动态开辟的内存区域的指针
- 释放数组空间:delete[] 指向动态开辟的内存区域的指针 --其中[]就表示数组
3.1.2、new/delete操作内置类型
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
void test()
{//未初始化,结果是随机值int* ptr = new int; //动态申请一个int类型的空间int* ptr1 = new int[10]; //动态申请10个int类型的空间int(*ptr2)[3] = new int[2][3]; //(*ptr2)[3]为数组指针,存放3个一维数组。//初始化,对应数据int* ptr3 = new int(10);int* ptr4 = new int[3]{1,2,3};int(*ptr5)[3] = new int[2][3]{ {1,2,3},{4,5,6} };cout << *ptr << endl;cout << *ptr1 << endl;cout << **ptr2 << endl;cout << *ptr3 << endl;cout << *ptr4<< endl;cout << **ptr5 << endl;delete ptr;delete[] ptr1;delete[] ptr2;delete ptr3;delete[] ptr4;delete[] ptr5;
}
int main()
{test();return 0;
}
随机值是一样的,其实是编译器的一种优化。
注意:
申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[],且必须匹配起来使用。
3.1.3、new/delete操作自定义类型
C++动态内存管理和C语言动态内存管理最大的区别在于二者对于自定义类型的处理,C语言中malloc/calloc/realloc函数只负责开辟空间,free函数只负责释放空间,而C++在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数。
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
class A
{
public:A(int vue=0):a(vue),next(nullptr){cout << "A():"<<this<< endl;};~A(){cout << "~A():"<<this<< endl;
}
private:int a;A* next;};
int main()
{//new的本质是开空间+调用构造函数初始化A* ptr = new A;A* ptr1 = new A(1);//创建A的对象A aa1(1);A aa2(2);A aa3(3);//有名对象A* ptr2 = new A[3]{aa1,aa2,aa3};//匿名对象A* ptr3 = new A[3]{A(1),A(2),A(3)};//直接给值A* ptr4 = new A[3]{1,2,3};//delete的本质是析构+释放空间delete ptr;delete ptr1;delete[] ptr2;delete[] ptr3;delete[] ptr4;return 0;
}
注意:
内置类型的对象在申请释放空间时,new和malloc除了用法有区别,别的没有区别。
3.2、认识operator new和operator delete函数
在C++中,new和delete是用户进行动态内存申请和释放的操作符,operator new和operator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间
operator new和operator delete 函数不是new 和delete的运算符重载,因为他们的参数没有自定义类型,而是库里实现的全局函数,只是取名为operator new和operator delete,不要被运算符重载所误导,这个需要我们进行单独的记忆;
C++底层operator new和operator delete的函数实现:
// operator new:
// 该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;
// 申请空间失败尝试执行空间不足应对措施,如果用户设置了应对措施,则继续申请,否则抛异常。
void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{// try to allocate size bytesvoid* p;while ((p = malloc(size)) == 0)if (_callnewh(size) == 0){// report no memory// 如果申请内存失败了,这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}return (p);
}// operator delete:
// 该函数最终是通过free来释放空间的
void operator delete(void* pUserData)
{_CrtMemBlockHeader* pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData == NULL)return;_mlock(_HEAP_LOCK); // block other threads__TRY// get a pointer to memory block headerpHead = pHdr(pUserData);// verify block type_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));_free_dbg(pUserData, pHead->nBlockUse); //此处调用free函数__FINALLY_munlock(_HEAP_LOCK); // release other threads__END_TRY_FINALLYreturn;
}// free的实现
#define free(p) _free_dbg(p, _NORMAL_BLOCK)
通过上述两个全局函数的实现知道,operator new实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常,operator delete 最终是通过free来释放空间的
下面我将通过具体的实例来解释这个现象:
通过查看反汇编来验证new和delete的底层调用
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;int main()
{int* a = new int;delete a;int* a1 = new int[10];delete[] a1;return 0;
}
对于new[]和delete[]来说,他们调用operator new[]和operator delete[]函数来实现其功能,但是他们的底层也是调用operator new 和operator delete 函数。
C和C++开辟空间失败的区别
我们知道,不断开辟空间或者开辟一块很大的空间就可能造成空间开辟失败,C语言的开辟空间失败,失败返回的是一个空指针,所以我们可以通过检查指针是否为空来判断是否开辟成功,而C++是面向对象的语言,通常采用的是抛异常的方式(抛异常必须要捕获,不捕获就会出问题),符合面向对象处理错误的方式。
抛异常的捕获方式:
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
int main()
{try{//抛异常,遇到异常直接返回,它是可以跨函数得。// new失败 抛异常 -- 不需要检查返回值char* p1 = new char[1024 * 1024 * 1024];cout << (void*)p1 << endl;char* p2 = new char[1024 * 1024 * 1024];cout << (void*)p2 << endl;}catch (const exception& e){cout << e.what() << endl; //what指发生了什么}return 0;
}
3.3、了解new和delete的实现原理
3.3.1、内置类型
如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。
3.3.2、自定义类型
new的原理
1.调用operator new函数申请空间
2.在申请的空间上执行构造函数,完成对象的构造
delete的原理
1.在空间上执行析构函数,完成对象中资源的清理工作
2.调用operator delete函数释放对象的空间
new T[N]的原理
1.调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请
2.在申请的空间上执行N次构造函数
delete[ ]的原理
1.在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
2.调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间
3.3.3、new和delete的实现原理
new/delete的底层是通过调用operator new和operator delete来实现的。
- new的实现原理:(1)调用operator new申请内存空间 (2)调用自定义类型的构造函数
- delete的实现原理:(1)调用自定义类型的析构函数 (2)调用operator delete释放内存空间
- new[]的实现原理:(1)调用operator new[]申请空间 (2)调用自定义类型的构造函数
- delete[]的实现原理:(1)调用自定义类型的析构函数 (2)调用operator delete[]释放空间
3.4、学习定位new(placement-new)
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
使用场景
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。
内存池
内存池(Memory Pool)是一种动态内存分配与管理技术,通常情况下,程序员习惯直接使用new,delete,malloc,free等API申请和释放内存,这样导致的后果就是:当程序运行的时间很长的时候,由于所申请的内存块的大小不定,频繁使用时会造成大量的内存碎片从而降低程序和操作系统的性能。
内存池则是在真正使用内存之前,先申请分配一大块内存(内存池)留作备用。当程序员申请内存时,从池中取出一块动态分配,当程序员释放时,将释放的内存放回到池内,再次申请,就可以从池里取出来使用,并尽量与周边的空闲内存块合并。若内存池不够时,则自动扩大内存池,从操作系统中申请更大的内存池。
使用operator new申请动态内存空间,不会调用自定义类型的构造函数。但是有时候我们希望在operator new函数申请的空间上调用构造函数,可构造函数却不支持直接显式调用,这是就需要用到定位new来实现。
定位new使用语法:new(指向动态开辟的内存空间的指针)类名(传给构造函数的参数)
虽然构造函数不能显示调用,但是析构函数可以显示调用。
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
class A
{
public:A(int a1 = 1, int a2 = 2, double a3 = 2.2): _a1(a1), _a2(a2), _a3(a3){cout << " A(int a1 = "<<_a1<<" int a2 = "<<_a2 <<" double a3 ="<<_a3 << endl;}~A(){cout << "~A()" <<endl;}private:int _a1;int _a2;double _a3;
};int main()
{A* pa1 = nullptr;A* pa2 = nullptr;try{pa1 = (A*)operator new(sizeof(A));pa2 = (A*)operator new(sizeof(A));}catch (const std::exception& e){cout << e.what() << endl;}//用定位new来显示调用构造函数new(pa1)A(1, 2, 3.3);new(pa2)A(2, 3, 4.4);//可以显示调用析构函数(*pa1).~A();pa2->~A();operator delete(pa1);operator delete(pa2);return 0;
}
四、动态内存管理常规面试题
4.1 malloc/free和new/delete的区别
malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:
1.malloc和free是函数,new和delete是操作符
2.malloc申请的空间不会初始化,new可以初始化
3.malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,是多个对象,[]中指定对象个数即可
4.malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
5.malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常
6.申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理
4.2 内存泄漏
如果申请了动态内存空间却不手动释放,就会造成内存泄漏。
4.2.1什么是内存泄漏,内存泄漏的危害
- 动态申请内存空间,不使用了,但却没有释放,就存在内存泄漏,使可用内存越来越少。
- 对于正常结束的进程,进程结束时泄漏掉的内存会自动还给系统,不会有太大危害。
对于非正常结束的进程,如僵尸进程,以及需要长期运行的程序,如服务器程序,出现内存泄漏的危害就很大,系统会变得越来越慢,甚至卡死宕机。
所以,动态申请的内存空间一定要记得释放!释放动态内存使用的函数(操作符)一定要与申请动态内存时用的函数(操作符)匹配:malloc–free、new-- delete、new[] – delete[]。
4.2.2 内存泄漏分类
C/C++程序中一般我们关心两种方面的内存泄漏:
1.堆内存泄漏(Heap leak)
堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。
2.系统资源泄漏
指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。
4.2.3 如何检测内存泄漏
在vs下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks()函数进行简单检测,该函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。
因此写代码时一定要小心,尤其是动态内存操作时,一定要记着释放。但有些情况下总是防不胜防,简单的可以采用上述方式快速定位下。如果工程比较大,内存泄漏位置比较多,不太好查时一般都是借助第三方内存泄漏检测工具处理的。
在linux下内存泄漏检测:Linux下几款内存泄漏检测工具
在windows下使用第三方工具:VHD工具说明
其他工具:内存泄漏工具比较
4.2.4 如何避免内存泄漏
- 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保证。
- 采用RAII思想或者智能指针来管理资源。
- 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
- 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。
[总结]
内存泄漏非常常见,解决方案分为两种:
1、事前预防型。如智能指针等。
2、事后查错型。如泄漏检测工具
相关文章:

[C/C++]——内存管理
学习C/C的内存管理 前言:一、C/C的内存分布二、C语言中动态内存管理方式三、C中动态内存管理方式3.1、new/delete操作符3.1.2、new/delete操作内置类型3.1.3、new/delete操作自定义类型 3.2、认识operator new和operator delete函数3.3、了解new和delete的实现原理3…...

PDF文件的限制编辑,如何设置?
想要给PDF文件设置一个密码防止他人对文件进行编辑,那么我们可以对PDF文件设置限制编辑,设置方法很简单,我们在PDF编辑器中点击文件 – 属性 – 安全,在权限下拉框中选中【密码保护】 然后在密码保护界面中,我们勾选【…...

Linux 中使用 docker 安装 Elasticsearch 及 Kibana
Linux 中使用 docker 安装 Elasticsearch 及 Kibana 安装 Elasticsearch 和 Kibana安装分词插件 ik_smart 安装 Elasticsearch 和 Kibana 查看当前运行的镜像及本地已经下载的镜像,确认之前没有安装过 ES 和 Kibana 镜像 docker ps docker images从远程镜像仓库拉…...
在Flutter中使用PhotoViewGallery指南
介绍 Flutter中的PhotoViewGallery是一个功能强大的插件,用于在应用中展示可缩放的图片。无论是构建图像浏览器、相册应用,还是需要在应用中查看大图的场景,PhotoViewGallery都是一个不错的选择。 添加依赖 首先,需要在pubspec…...

c语言中的static静态(1)static修饰局部变量
#include<stdio.h> void test() {static int i 1;i;printf("%d ", i); } int main() {int j 0;while (j < 5){test();j j 1;}return 0; } 在上面的代码中,static修饰局部变量。 当用static定义一个局部变量后,这时局部变量就是…...
生信算法4 - 获取overlap序列索引和序列的算法
生信序列基本操作算法 建议在Jupyter实践,python版本3.9 1. 获取overlap序列索引和序列的算法实现 # min_length 最小overlap碱基数量3个 def getOverlapIndexAndSequence(a, b, min_length3):""" Return length of longest suffix of a matching…...
springboot 学习网站
Spring Boot 系列教程https://www.docs4dev.com/ Spring Boot 教程汇总 http://www.springboot.wiki/ Spring Cloud 微服务教程 http://www.springboot.wiki/ 1、自定义banner https://www.cnblogs.com/cc11001100/p/7456145.html 2、事件和监听器 https://blog.csd…...

论文笔记:A review on multi-label learning
一、介绍 传统的监督学习是单标签学习,但是现实中一个实例可能对应多个标签。这篇文章介绍了多标签分类的定义和评价指标、多标签学习的算法还有其他相关的任务。 二、问题相关定义 2.1 多标签学习任务 假设 X R d X R^d XRd,表示d维的输入空间&am…...

接口文档 YAPI介绍
YAPI介绍 YAPI使用流程...

LeetCode 300最长递增子序列 674最长连续递增序列 718最长重复子数组 | 代码随想录25期训练营day52
动态规划算法10 LeetCode 300 最长递增子序列 2023.12.15 题目链接代码随想录讲解[链接] int lengthOfLIS(vector<int>& nums) {//创建变量result存储最终答案,设默认值为1int result 1;//1确定dp数组,dp[i]表示以nums[i]为结尾的子数组的最长长度ve…...

Improving IP Geolocation with Target-Centric IP Graph (Student Abstract)
ABSTRACT 准确的IP地理定位对于位置感知的应用程序是必不可少的。虽然基于以路由器为中心(router-centric )的IP图的最新进展被认为是前沿的,但一个挑战仍然存在:稀疏IP图的流行(14.24%,少于10个节点,9.73%孤立)限制了图的学习。为了缓解这个问题,我们将目标主机(ta…...
华为技面三轮面试题
1. 最长回文子串 -- 中心扩散法 给你一个字符串 s,找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。 示例 1: 输入:s "babad" 输出:"bab" 解释&…...

Linux arm架构下构建Electron安装包
上篇文章我们介绍 Electron 基本的运行开发与 windows 安装包构建简单流程,这篇文章我们从零到一构建 Linux arm 架构下安装包,实际上 Linux arm 的构建流程,同样适用于 Linux x86 环境,只不过需要各自的环境依赖,Linu…...

【CCF BDCI 2023】多模态多方对话场景下的发言人识别 Baseline 0.71 NLP 部分
【CCF BDCI 2023】多模态多方对话场景下的发言人识别 Baseline 0.71 NLP 部分 概述NLP 简介文本处理词嵌入上下文理解 文本数据加载to_device 函数构造数据加载样本数量 len获取样本 getitem 分词构造函数调用函数轮次嵌入 RobertaRoberta 创新点NSP (Next Sentence Prediction…...
推免那些事
平生第一次搞推免,也是最后一次。错失了一些机会,也有幸获得了一些机会,值得祝庆,也值得反思。 以下记录为个人流水账。 个人背景 我的背景可以算不是非常好了,况且今年211受歧视比较严重。 学校:211&…...

华清远见嵌入式学习——QT——作业2
作业要求: 代码运行效果图: 登录失败 和 最小化 和 取消登录 登录成功 和 X号退出 代码: ①:头文件 #ifndef LOGIN_H #define LOGIN_H#include <QMainWindow> #include <QLineEdit> //行编辑器类 #include…...

C# Winfrm 编写一个天气查看助手
#前言# 最近这个北方的天气啊经常下雪,让我想起来我上学时候写的那个天气预报小功能了,今天又复现了一下,哈哈哈,大家当个乐子看哈! 1.创建项目 2.添加引用 上图所示,下载所需天气预报标识,网站…...
基于SpringBoot和微信小程序的农场信息管理系统
文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SpringBoot和微信小程序的农场信息管…...

Linux统计网卡流量
cat /proc/net/dev Linux 内核提供了一种通过 /proc 文件系统,在运行时访问内核内部数据结构、改变内核设置的机制。proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间。它以文件系统的方式为访问系统内核数据的操作提供接口。…...

设计可编辑表格组件
前言 什么是可编辑表格呢?简单来说就是在一个表格里面进行表单操作,执行增删改查。这在一些后台管理系统中是尤为常见的。 今天我们根据vue2 element-ui来设计一个表单表格组件。(不涉及完整代码,想要使用完整功能可以看底部连…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...