Linux下Netty实现高性能UDP服务
前言
近期笔者基于Netty接收UDP报文进行业务数据统计的功能,因为Netty默认情况下处理UDP收包只能由一个线程负责,无法像TCP协议那种基于主从reactor模型实现多线程监听端口,所以笔者查阅网上资料查看是否有什么方式可以接收UDP收包的性能瓶颈,遂以此文来记录一下笔者的解决过程。
简介Linux内核3.9的新特性对Netty的影响
常规的Netty处理UDP包我们只能用按个NIOEventLoop线程接收传输的数据包,从底层来看即只使用一个socket线程监听网络端口,通过这一个线程将数据传输到应用层上,这一切使得我们唯一能够调优的方式就是在Socket监听传输时尽可能快速将发送给应用程序,让应用程序及时处理完以便NIOEventLoop线程能够及时处理下一个UDP数据包。亦或者,我们也可以直接通过增加服务器的数量通过集群的方式提升系统整体的吞吐量。

然而事实真是如此吗?在Linux内核3.9版本新增了一个SO_REUSEPORT的特性,它使得单台Linux的端口可以被多个Socket线程监听,这一特性使得Netty在高并发场景下的UDP数据包能够及时被多个线程及时处理,尽可能的避免了丢包线程且最大化的利用了CPU核心,实现内核层面的负载均衡。

Netty实现Linux下UDP端口复用步骤
引入Netty依赖
为了使用Netty我们必须先引入对应的maven依赖,这里笔者选择了4.1.58的最终版,读者可以按需选择自己的版本。
<!--netty--><dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.58.Final</version></dependency>
编写启动类和启动逻辑
然后我我们需要编写Netty的启动类,代码模板如下,因为Netty默认使用的是Java NIO,而在Linux支持epoll模型,相比与常规的Java NIO这种通过来回在用户态和内核态来回拷贝事件数组fd的方式,epoll内部自己维护了事件的数组并可以将自行去询问连接状态并将结果返回到用户态显得更加高效。
所以笔者在启动类的编写时会判断当前服务器是否支持epoll的逻辑,并通过该判断顺手解决了是否基于SO_REUSEPORT开启多线程监听的功能(注:这段代码读者必须自行查阅一下服务器内核版本是否大于等于3.9)。
/*** netty服务*/
@Component
public class NettyUdpServer {private static final Logger LOG = LoggerFactory.getLogger(NettyUdpServer.class);private EventLoopGroup bossLoopGroup;private Channel serverChannel;/*** netty初始化*/public void init(int port) {LOG.info("Epoll.isAvailable():{}", Epoll.isAvailable());//表示服务器连接监听线程组,专门接受 accept 新的客户端client 连接bossLoopGroup = Epoll.isAvailable() ? new EpollEventLoopGroup() : new NioEventLoopGroup();try {//1、创建netty bootstrap 启动类Bootstrap serverBootstrap = new Bootstrap();//2、设置boostrap 的eventLoopGroup线程组serverBootstrap.group(bossLoopGroup)//3、设置NIO UDP连接通道.channel(Epoll.isAvailable() ? EpollDatagramChannel.class : NioDatagramChannel.class)//4、设置通道参数 SO_BROADCAST广播形式.option(ChannelOption.SO_BROADCAST, true).option(ChannelOption.SO_RCVBUF, 1024 * 1024)//5、设置处理类 装配流水线.handler(new NettyUdpHandler());// linux平台下支持SO_REUSEPORT特性以提高性能if (Epoll.isAvailable()) {LOG.info("SO_REUSEPORT");serverBootstrap.option(EpollChannelOption.SO_REUSEPORT, true);}// 如果支持epoll则说明是Linux版本,则利用SO_REUSEPORT创建多个线程if (Epoll.isAvailable()) {// linux系统下使用SO_REUSEPORT特性,使得多个线程绑定同一个端口int cpuNum = Runtime.getRuntime().availableProcessors();LOG.info("using epoll reuseport and cpu:" + cpuNum);for (int i = 0; i < cpuNum; i++) {LOG.info("worker-{} bind", i);//6、绑定server,通过调用sync()方法异步阻塞,直到绑定成功ChannelFuture future = serverBootstrap.bind(port).sync();if (!future.isSuccess()) {LOG.error("bootstrap bind fail port is " + port);throw new Exception(String.format("Fail to bind on [host = %s , port = %d].", "192.168.2.128", port), future.cause());} else {LOG.info("bootstrap bind success ");}}} else {ChannelFuture future = serverBootstrap.bind(port).sync();if (!future.isSuccess()) {LOG.error("bootstrap bind fail port is " + port);throw new Exception(String.format("Fail to bind on [host = %s , port = %d].", "127.0.0.1", port), future.cause());} else {LOG.info("bootstrap bind success ");}}} catch (Exception e) {LOG.error("报错了,错误原因:{}", e.getMessage(), e);}}}
因为该代码是编写在spring boot项目中,所以我们还需要添加一下启动的逻辑。
@Component
public class InitTask implements CommandLineRunner {private static final Logger LOG = LoggerFactory.getLogger(InitTask.class);@Autowiredprivate NettyUdpServer nettyUdpServer;@Overridepublic void run(String... args) {LOG.info("netty服务器初始化成功,端口号:{}", 7000);nettyUdpServer.init(7000);}}
封装业务处理类
处理类的逻辑比较简单了,收到内容后打印后,原子类自增一下,该原子类是用于后续压测统计是否丢包用的。
/*** 报文处理器*/
@Component
@ChannelHandler.Sharable
public class NettyUdpHandler extends SimpleChannelInboundHandler<DatagramPacket> {private static final Logger LOG = LoggerFactory.getLogger(NettyUdpHandler.class);private static AtomicInteger atomicInteger=new AtomicInteger(0);@Overrideprotected void channelRead0(ChannelHandlerContext ctx, DatagramPacket dp) {try {int length = dp.content().readableBytes();//分配一个新的数组来保存具有该长度的字节数据byte[] array = new byte[length];//将字节复制到该数组dp.content().getBytes(dp.content().readerIndex(), array);LOG.info("收到UDP报文,报文内容:{} 包处理个数:{}", new String(array),atomicInteger.incrementAndGet());} catch (Exception e) {LOG.error("报文处理失败,失败原因:{}", e.getMessage(), e);}}
}
基于jmeter完成压测统计丢包率
自此我们项目都编写完成了,我们不妨使用jmeter进行一次压测,可以看到笔者会一次性发送100w个数据包查看最终的收包数。

而UDP包的格式以及目的地址和内容如下

最终压测结果如下,可以看到服务器都及时的收到了数据包,并不存在丢包的现象。

为了可以看到性能的提升,笔者将代码还原回单线程监听的老代码段:
/*** netty初始化*/public void init(int port) {LOG.info("Epoll.isAvailable():{}", Epoll.isAvailable());//表示服务器连接监听线程组,专门接受 accept 新的客户端client 连接bossLoopGroup = Epoll.isAvailable() ? new EpollEventLoopGroup() : new NioEventLoopGroup();try {//1、创建netty bootstrap 启动类Bootstrap serverBootstrap = new Bootstrap();//2、设置boostrap 的eventLoopGroup线程组serverBootstrap.group(bossLoopGroup)//3、设置NIO UDP连接通道.channel(Epoll.isAvailable() ? EpollDatagramChannel.class : NioDatagramChannel.class)//4、设置通道参数 SO_BROADCAST广播形式.option(ChannelOption.SO_BROADCAST, true).option(ChannelOption.SO_RCVBUF, 1024 * 1024)//5、设置处理类 装配流水线.handler(new NettyUdpHandler());ChannelFuture future = serverBootstrap.bind(port).sync();if (!future.isSuccess()) {LOG.error("bootstrap bind fail port is " + port);throw new Exception(String.format("Fail to bind on [host = %s , port = %d].", "127.0.0.1", port), future.cause());} else {LOG.info("bootstrap bind success ");}} catch (Exception e) {LOG.error("报错了,错误原因:{}", e.getMessage(), e);}}
根据老的压测结果来看,单线程监听的情况下,确实会存在一定的丢包,所以如果在高并发场景下使用Netty接收UDP数据包的小伙伴,建立利用好Linux内核3.9的特性提升程序的吞吐量哦。

参考文献
Linux下Netty实现高性能UDP服务(SO_REUSEPORT): https://blog.csdn.net/monokai/article/details/108453746
Netty网络传输简记: https://www.sharkchili.com/pages/710071/#前言
相关文章:
Linux下Netty实现高性能UDP服务
前言 近期笔者基于Netty接收UDP报文进行业务数据统计的功能,因为Netty默认情况下处理UDP收包只能由一个线程负责,无法像TCP协议那种基于主从reactor模型实现多线程监听端口,所以笔者查阅网上资料查看是否有什么方式可以接收UDP收包的性能瓶颈…...
Ubuntu 22.04 Tesla V100s显卡驱动,CUDA,cuDNN,MiniCONDA3 环境的安装
今天来将由《蓝创精英团队》带来一个Ubuntu 显卡环境的安装,主要是想记录下来,方便以后快捷使用。 主要的基础环境 显卡驱动 (nvidia-smi)CUDA (nvidia-smi 可查看具体版本)cuDNN (cuda 深度学习加速库)Conda python环境管理(Miniconda3) Nvidia 驱动…...
FFmpeg转码流程和常见概念
视频格式:mkv,flv,mov,wmv,avi,mp4,m3u8,ts等等 FFmpeg的转码工具,它的处理流程是这样的: 从输入源获得原始的音视频数据,解封装得到压缩封装的音…...
【01】GeoScene生产海图或者电子航道图
1.1 什么是电子海图制图模块 GeoScene海事模块是一个用于管理和制作符合国际水文组织(IHO)S-100系列标准和S-57标准的海事数据的系统。提供了S-100和S-57工具,用于加载基于S-100的要素目录、创建基于S-57传输结构的数据、输入数据、符号化数…...
TWS蓝牙耳机的船运模式
TWS蓝牙耳机的船运模式 是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17, 本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料, TWS蓝牙耳机的船运模式是指在将耳机从一个地方运送到另一个地方时,…...
Vue系列之指令 v-html
文章の目录 1、v-html指令2、基本用法写在最后 1、v-html指令 v-html 指令类似于 v-text 指令,它与 v-text 区别在于 v-text 输出的是纯文本,浏览器不会对其再进行html解析,但v-html会将其当html标签解析后输出,类似于 JavaScrip…...
Mac如何安装stable diffusion
今天跟大家一起在Mac电脑上安装下stable diffusion,在midjourney等模型收费的情况下如何用自己的电脑算力用上免费的画图大模型呢?来吧一起实操起来 一、安装homebrew 官网地址:Homebrew — The Missing Package Manager for macOS (or Lin…...
Kubernetes (k8s) 快速认知
应用部署方式 传统部署时代 早期的时候,各个组织是在物理服务器上运行应用程序。缺点 资源分配问题: 无法限制在物理服务器中运行的应用程序资源使用 维护成本问题: 部署多个物理机,维护许多物理服务器的成本很高 虚拟化部署时…...
Electron V28主进程与渲染进程互相通信总结
本文示例采用ElectronVue3TS编写,请读者理顺思路,自行带入自己的项目。 注: 读本文前请先搞懂什么是主进程,什么是渲染进程。 在Electron中有着ipcMain和ipcRenderer、contextBridge模块,以及创建窗口对象上的webCont…...
MySQL主从复制详解
目录 1. 主从复制的工作原理 1.1. 主从复制的角色 1.2. 主从复制的流程 2. 配置MySQL主从复制 2.1. 确保主服务器开启二进制日志 2.2. 设置从服务器 2.3. 连接主从服务器 2.4. 启动复制 3. 主从复制的优化与注意事项 3.1. 优化复制性能 3.2. 注意复制延迟 3.3. 处理…...
verilog基础语法-计数器
概述: 计数器是FPGA开发中最常用的电路,列如通讯中记录时钟个数,跑马灯中时间记录,存储器中地址的控制等等。本节给出向上计数器,上下计数器以及双向计数器案例。 内容 1. 向上计数器 2.向下计数器 3.向上向下计数…...
有SCL,SDA,TRIG,I2C的元器件是什么?在哪找?proteus
寻找方法:...
再谈低代码开发——值得所有程序设计和开发者重视的建议!
前几天看到关于“低代码开发”的话题,简单的谈了些自己的看法,也看了一些朋友们各抒己见的好文章,今天想结合我们实际使用的开发平台和大家再做些探讨。 在平台的简介中首先提出了这个大家一定很关心的问题: 一、“为什么使用低代…...
Docker部署MinIO对象存储服务器结合内网穿透实现远程访问
文章目录 前言1. Docker 部署MinIO2. 本地访问MinIO3. Linux安装Cpolar4. 配置MinIO公网地址5. 远程访问MinIO管理界面6. 固定MinIO公网地址 前言 MinIO是一个开源的对象存储服务器,可以在各种环境中运行,例如本地、Docker容器、Kubernetes集群等。它兼…...
USB2.0 Spec
USB System Description A USB system is described by three definitional areas: • USB interconnect • USB devices • USB host USB interconnect The USB interconnect is the manner in which USB devices are connected to and communicate with the host. USB Ho…...
prbs测试
PRBS是 Pseudo Random Binary Sequence 的简称,是一种伪随机序列,用于产生随机数据。 PRBS检测主要应用在设备开局或维护期间,在没有合适误码仪的情况下,使能了PRBS检测功能的设备自行发送PRBS码流,PRBS码流通过被测试网络,经远端设备环回(远端设备需要配置环回),经过PR…...
计算机网络:数据链路层(VLAN)
今天又学到一个知识,加油! 目录 一、传统局域网的局限(促进VLAN的诞生) 二、VLAN简介 三、VLAN的实现 总结 一、传统局域网的局限(促进VLAN的诞生) 缺乏流量隔离:即使把组流量局域化道一个单一交换机中…...
C# WPF上位机开发(动态添加控件)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 写图形界面软件的时候,我们经常会遇到一种情况。那就是图形界面上面,显示的控件可能是不定的。有可能多,也有可…...
MySQL进阶|MySQL中的事务(一)
文章目录 数据库事务MySQL中的存储引擎InnoDB存储引擎架构什么是事务事务的状态总结 数据库事务 MySQL 事务主要用于处理操作量大,复杂度高的数据。比方我想要删除一个用户(销户)以及这个用户的个人信息、订单信息以及其他信息,这…...
设计模式策略模式讲解和代码示例
引言 策略是一种行为设计模式, 它将一组行为转换为对象, 并使其在原始上下文对象内部能够相互替换。 原始对象被称为上下文, 它包含指向策略对象的引用并将执行行为的任务分派给策略对象。 为了改变上下文完成其工作的方式, 其他对象可以使用另一个对象来替换当前链接的策…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
