智能优化算法应用:基于算术优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于算术优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于算术优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.算术优化算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用算术优化算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.算术优化算法
算术优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/119785544
算术优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
算术优化算法参数如下:
%% 设定算术优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果

从结果来看,覆盖率在优化过程中不断上升。表明算术优化算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:
智能优化算法应用:基于算术优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于算术优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于算术优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.算术优化算法4.实验参数设定5.算法结果6.…...
在vue中通过js动态绘制table,并且合并连续相同内容的行,支持点击编辑单元格内容
首先是vue代码 <template><div id"body-container"style"position: absolute"><div class"box-container"><div class"lsb-table-box" ><div class"table-container" id"lsb-table"&…...
输电线路定位:精确导航,确保电力传输安全
在现代社会中,电力作为生活的基石,其安全稳定运行至关重要。而输电线路作为电力传输的重要通道,其故障定位和修复显得尤为重要。恒峰智慧科技将为您介绍一种采用分布式行波测量技术的输电线路定位方法,以提高故障定位精度…...
ZKP Commitment (1)
MIT IAP 2023 Modern Zero Knowledge Cryptography课程笔记 Lecture 5: Commitment 1 (Ying Tong Lai) Overview: Modern SNARK IOP: Interactive Oracle ProofCommitment SchemeIOP “compiled by” the commitment scheme to get a non-interactive proofAn IOP is “inform…...
【难点】【LRU】146.LRU缓存
题目 法1:基于Java的LinkedHashMap 必须掌握法1。参考链接 关于LinkedHashMap的介绍 class LRUCache {int cap;LinkedHashMap<Integer, Integer> cache new LinkedHashMap<>();public LRUCache(int capacity) { this.cap capacity;}public int get…...
基于YOLOv8深度学习的吸烟/抽烟行为检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...
菜鸟学习日记(python)——匿名函数
Python 使用 lambda 来创建匿名函数。 lambda 函数是一种小型、匿名的内联函数,它可以具有任意数量的参数,但只能有一个表达式。 匿名函数的一般格式如下: lambda 参数列表:表达式 表达式用于计算并返回函数结果 lambda 函数通常用于编写…...
CompleteFuture与Future的比较
CompleteFuture的介绍CompleteFuture的特点CompleteFuture的应用场景CompletableFuture的优缺点Future的介绍Future的特点Future的应用场景Future的优缺点CompletableFuture和Future的区别CompletableFuture和Future的关联关系CompletableFuture和Future的使用示例CompletableF…...
数据分享 I 全国市级商品房屋销售数据,shp/excel格式,2005-2020年数据
基本信息. 数据名称: 全国市级商品房屋销售数据 数据格式: Shp、excel 数据时间: 2005-2020年 数据几何类型: 面 数据坐标系: WGS84坐标系 数据来源:网络公开数据 数据字段: 序号字段名称字段说明1spxse商品房销售额(亿元…...
面试题总结(十一)【C++】【华清远见西安中心】
C和C的区别有哪些? C 和 C 是两种不同的编程语言,它们有以下一些区别: 1. 语言起源和发展:C 语言是由贝尔实验室的 Dennis Ritchie 在 1972 年开发的,主要用于系统编程和底层开发;而 C 语言是在 C 语言的基…...
c++_01_名字空间_复合类型_缺省参数_哑元函数
0 前言 C和C一样,都属于编译型语言 C和C一样,都属于强类型语言 C对C完全兼容,并提供更多面向对象的特性:语言风格更加简洁,类型检查更加严格 1 名字空间 namespace WHY?划分更精细的逻辑单元(逻辑空间)&…...
前端常见面试题之html和css篇
文章目录 一、html1. 如何理解html语义化2. 说说块级元素和内联元素的区别 二、css1. 盒模型的宽度offsetWidth如何计算2. box-sizing:border-box有什么用3. margin的纵向重叠问题4. 谈谈你对BFC的理解和应用5. 清除浮动有哪些方式6. 使用flex布局实现骰子37.position的absolut…...
使用libaom处理av1编码教程
使用libaom处理av1编码教程 文章目录 使用libaom处理av1编码教程一. av1 是什么二. av1 用处三. libaom 是什么四. libaom 安装五. libaom 安装完成六. 解码av1 一. av1 是什么 AV1(AOMedia Video 1)是一种 开源视频编码格式 。它由开放媒体联盟 (AOM) …...
面试题总结(十)【数据库】【华清远见西安中心】
数据库的分类有哪些? 数据库可以按照不同的标准进行分类,以下是一些常见的数据库分类方式: 1. 关系型数据库(Relational Database):关系型数据库采用表格的形式来组织数据,数据之间通过键值关联…...
计算机网络:物理层(三种数据交换方式)
今天又学到一个知识,加油! 目录 前言 一、电路交换 二、报文交换 三、分组交换 1、数据报方式 2、虚电路方式 3、比较 总结 前言 为什么要进行数据交换? 一、电路交换 电路交换原理:在数据传输期间,源结点与…...
ubuntu18.04 64 位安装笔记——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项——任务2:离线数据处理
进入VirtuakBox官网,网址链接:Oracle VM VirtualBoxhttps://www.virtualbox.org/ 网页连接:Ubuntu Virtual Machine Images for VirtualBox and VMwarehttps://www.osboxes.org/ubuntu/ 将下发的ds_db01.sql数据库文件放置mysql中 12、编写S…...
Nvidia 驱动安装不完整记录
Nvidia 驱动安装不完整记录 安装 epel, sudo dnf install -y https://dl.fedoraproject.org/pub/epel/epel-releaselatest-8.noarch.rpm安装 gcc-toolset-11-gcc, dnf install gcc-toolset-11-gcc修改 gcc,make,as 为 gcc-tools…...
龙芯loongarch64服务器编译安装gcc-8.3.0
前言 当前电脑的gcc版本为8.3.0,但是在编译其他依赖包的时候,出现各种奇怪的问题,会莫名其妙的中断编译。本地文章讲解如何自编译安装gcc,替换系统自带的gcc。 环境准备 下载页面:龙芯开源社区网站 - LoongArch GCC 8.3 交叉工具链 - 源码下载源码包名称如:loongson-gnu…...
宏基因组学Metagenome-磷循环Pcycle功能基因分析-从分析过程到代码及结果演示-超详细保姆级流程
大背景介绍 生信分析,凡事先看论文,有了论文就有了参考,后续分析就有底了,直接上硬菜开干: PCycDB: a comprehensive and accurate database for fast analysis of phosphorus cycling genes - PubMed 数据库及部分分析代码github库: GitHub - ZengJiaxiong/Phospho…...
element plus 日期范围 自定义内容
问题: 按照官网上的自定义内容示例,修改日期选择器没有问题,如果修改日期范围选择器,修改后会丢失日期范围选择时的样式。 解决: 从F12中不难看出日期范围的选择样式来自于.el-date-table-cell 而示例中写的是.cell&…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
