tensorflow入门 自定义模型
前面说了自定义的层,接下来自定义模型,我们以下图为例子

这个模型没啥意义,单纯是为了写代码实现这个模型
首先呢,我们看有几个部分,dense不需要我们实现了,我们就实现Res,为了实现那个*3,我们注意这个res可能需要多个res堆叠。
class ResBlock(keras.layers.Layer):def __init__(self, n_layers, n_neurons, **kwargs):super().__init__(**kwargs)self.hidden =[keras.layers.Dense(n_neurons,activation='elu',kernel_initializer='he_normal')for _ in range(n_layers)]def call(self, inputs):Z = inputsfor layer in self.hidden:Z = layer(Z)return inputs + Z
这样我们就能实现一个可以循环的Res了,call是必须的,因为在计算的时候需要它
如果我们写得再详细一点,可能要加入built,如果需要保存和加载模型,我们需要get_congit和save_congit,总之,基本的样子就是如此。
为了防止搞错,解释以下为什么没有使用built,是为了偷懒。
下面我们构建模型的时候,会指定输入的维度,其实再通用的情况下,我们根本不知道输入的维度,built会自动推断输入维度,所有本来应该写个built的,但是睡觉时间到了。
然后我们基于上面的自定义层,实现左边的模型
def ResModel(keras.Model):def __init__(self, out, **kwargs):super().__init__(*kwargs)self.hidden1 = keras,layers,Dense(30, activation='elu', kernel_initializer='he_normal')self.block1 = ResBlock(2,10)self.block2 = ResBlock(2,20)self.out = keras,layers,Dense(out)def call(self, inputs):Z = self.hidden1(inputs)for _ in range(4):Z = self.block1(Z)Z = self.block2(Z)return self.out(Z)
我觉得在此以及无需多言了。睡觉睡觉。
相关文章:
tensorflow入门 自定义模型
前面说了自定义的层,接下来自定义模型,我们以下图为例子 这个模型没啥意义,单纯是为了写代码实现这个模型 首先呢,我们看有几个部分,dense不需要我们实现了,我们就实现Res,为了实现那个*3,我们…...
虚拟机启动 I/O error in “xfs_read_agi+0x95“
1.在选择系统界面按e 进入维护模式 2.找到ro把ro改成 rw init/sysroot/bin/sh 然后按Ctrlx 3.找到坏掉的分区,以nvme0n1p3为例进行修复 xfs_repair -d /dev/nvme0n1p3 4.init 6 重新启动 以下情况 先umount 再修复 则修复成功...
【MYSQL】-库的操作
💖作者:小树苗渴望变成参天大树🎈 🎉作者宣言:认真写好每一篇博客💤 🎊作者gitee:gitee✨ 💞作者专栏:C语言,数据结构初阶,Linux,C 动态规划算法🎄 如 果 你 …...
网络协议小记
一、TCP/IP协议 作为一个小萌新,当然我无法将tcp/ip协议的大部分江山和盘托出,但是其中很多面试可能问到的知识,我觉得有必要总结一下! 首先,在学习tcp/ip协议之前,我们必须搞明白什么是tcp/ip协议。 1、…...
STM32-I2C通讯-AHT20温湿度检测
非常感谢,提供的视频学习 https://www.bilibili.com/video/BV1QN411D7ak/?spm_id_from333.788&vd_source8ca4826038edd44bb618801808a5e076 该文章注意:串口显示中文会乱码,必须选用支持ASCII的串口助手,才能正常显示中文。…...
【机器学习】043_准确率、精确率、召回率
一、定义 在处理偏斜数据集时,通常使用不同的误差度量,而不仅仅是使用分类误差来衡量算法性能。 1. 混淆矩阵的概念 二分类问题的混淆矩阵为2X2矩阵,由四部分组成: 假阴性(FN):模型预测为负…...
【Qt开发流程】之文件目录、文件、输入和输出
概述 应用程序操作过程中,经常要对设备或文件进行读或者写操作。也会经常对文件及目录进行操作。 在Qt中,QIODevice类是Qt中所有进行I/O操作的设备的基类,比如QFile、 QIODevice为支持数据块读写的设备(如QFile、QBuffer和QTcpSo…...
CSS的基本选择器及高级选择器(附详细示例以及效果图)
Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍HTML中CSS的基础选择及高级选择器(详解)以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获…...
股票价格预测 | Python实现基于Stacked-LSTM的股票预测模型,可预测未来(keras)
文章目录 效果一览文章概述模型描述源码设计效果一览 文章概述 以股票价格预测为例,基于Stacked-LSTM的股票预测模型(keras),可预测未来。 模型描述 LSTM 用于处理序列数据,如时间序列、文本和音频。相对于传统的RNN,LSTM更擅长捕获长期依赖关系,...
数据可视化---离群值展示
内容导航 类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统…...
LeetCode Hot100 51.N皇后
题目: 按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上,并且使皇后彼此之间不能相互攻击。 给你一个整数 n ,返回所有不同的 n 皇后问题 的…...
机器学习 | 贝叶斯方法
不同于KNN最近邻算法的空间思维,线性算法的线性思维,决策树算法的树状思维,神经网络的网状思维,SVM的升维思维。 贝叶斯方法强调的是 先后的因果思维。 监督式模型分为判别式模型和生成式模型。 判别模型和生成模型的区别…...
缓存的定义及重要知识点
文章目录 缓存的意义缓存的定义缓存原理缓存的基本思想缓存的优势缓存的代价 缓存的重要知识点 缓存的意义 在互联网高访问量的前提下,缓存的使用,是提升系统性能、改善用户体验的唯一解决之道。 缓存的定义 缓存最初的含义,是指用于加速 …...
TrustZone之顶层软件架构
在处理器中的TrustZone和系统架构中,我们探讨了硬件中的TrustZone支持,包括Arm处理器和更广泛的内存系统。本主题关注TrustZone系统中发现的软件架构。 一、顶层软件架构 下图显示了启用TrustZone的系统的典型软件栈: 【注意】:为简单起见,该图不包括管理程序,尽管它们可…...
SpringBoot Whitelabel Error Page 报错--【已解决】
springboot 报错信息如下 这个报错页面就是个404 ,代表你访问的url 没有对应的的requestmapping 其实没啥影响的一个问题,但是看到Error 就是不爽,改了他丫的 解决方法如下 一、调整application.properties配置【治标不治本】 server.err…...
02.Git常用基本操作
一、基本配置 (1)打开Git Bash (2)配置姓名和邮箱 git config --global user.name "Your Name" git config --global user.email "Your email" 因为Git是分布式版本控制工具,所以每个用户都需要…...
黑盒测试中关键截图如何打点
黑盒测试中关键截图如何打点Android黑盒测试过程中如何进行有效的打点是我们经常遇到的问题,我们一般会在脚本内部进行数据打点,也可以使用其他进程录屏或截图。那我们如何选取合适的方式进行打点记录呢?下图是对常用打点方式的统计ÿ…...
画图之C4架构图idea和vscode环境搭建篇
VS Code 下C4-PlantUML安装 安装VS Code 直接官网下载安装即可,过程略去。 安装PlantUML插件 在VS Code的Extensions窗口中搜索PlantUML,安装PlantUML插件。 配置VS Code代码片段 安装完PlantUML之后,为了提高效率,我们最好安装PlantUML相关的代码片段。 打开VS Cod…...
安卓小练习-校园闲置交易APP(SQLite+SimpleCursorAdapter适配器)
环境: SDK:34 JDK:20.0.2 编写工具:Android Studio 2022.3.1 整体效果(视频演示): 小练习-闲置社区APP演示视频-CSDN直播 部分效果截图: 整体工作流程: 1.用户登录&…...
Pycharm 如何更改成中文版| Python循环语句| for 和 else 的搭配使用
🌈write in front🌈 🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...
python可视化:俄乌战争时间线关键节点与深层原因
俄乌战争时间线可视化分析:关键节点与深层原因 俄乌战争是21世纪欧洲最具影响力的地缘政治冲突之一,自2022年2月爆发以来已持续超过3年。 本文将通过Python可视化工具,系统分析这场战争的时间线、关键节点及其背后的深层原因,全面…...
解密鸿蒙系统的隐私护城河:从权限动态管控到生物数据加密的全链路防护
摘要 本文以健康管理应用为例,展示鸿蒙系统如何通过细粒度权限控制、动态权限授予、数据隔离和加密存储四大核心机制,实现复杂场景下的用户隐私保护。我们将通过完整的权限请求流程和敏感数据处理代码,演示鸿蒙系统如何平衡功能需求与隐私安…...
