当前位置: 首页 > news >正文

测试TensorFlow/PyTorch的GPU版本是否启用

文章目录

  • 1. Pytorch测试代码
  • 2. TensorFlow测试代码

后续遇到好的会不断更新。。。


1. Pytorch测试代码

import torch
def gpu_is_available():print('\nGPU details:')print(f'    gpu_is_available      : ', torch.cuda.is_available())print(f'    cuda_device_count     : ', torch.cuda.device_count())print(f'    cuda_device_name      : ', torch.cuda.get_device_name())print(f'    cuda_device_capability: ', torch.cuda.get_device_capability(0))
gpu_is_available()

来源:“PyTorch快速安装并验证GPU是否可用”

#测试pytorch-gpu是否能用
import torch
flag = torch.cuda.is_available()
print(flag)
ngpu= 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print('cuda设备名:',device)
print('gpu名称:',torch.cuda.get_device_name(0))
print('pytorch版本:',torch.__version__)
print('cuda版本:',torch.version.cuda)
print('cudnn版本号:',torch.backends.cudnn.version())
print('定义一个torch格式的3*3的矩阵:',torch.rand(3,3).cuda())

来源:“如何测试pytorch-gpu版本和tensorflow-gpu版本是否安装成功”

import torch
# 使用GPU训练
if not torch.cuda.is_available():print('CUDA is not available.  Training on CPU ...')
else:print('CUDA is available.  Training on GPU ...')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

来源:“深入学习之anaconda、pytorch、cuda安装”

#coding=gbk
import torch# 定义张量的形状和大小
shape = (100, 1000)
num_tensors = 50000device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
data = [torch.rand(shape, device=device) for _ in range(num_tensors)]total_sum = torch.tensor([0.0])
for tensor in data:total_sum += tensor.sum().cpu()print('Total sum:', total_sum.item())

来源:“测试pytorch-gpu”

2. TensorFlow测试代码

#测试tensorflow-gpu是否能用
import tensorflow as tf
print('\n\nGPU',tf.config.list_physical_devices('GPU'))
a = tf.constant(2.)
b = tf.constant(4.)
print('打印a*b:',a * b)
print("tensorflow版本:", tf.__version__)

来源:“如何测试pytorch-gpu版本和tensorflow-gpu版本是否安装成功”

import tensorflow as tf
print(tf.test.is_gpu_available())

来源:“检测安装Tensorflow后是否成功调用GPU”

相关文章:

测试TensorFlow/PyTorch的GPU版本是否启用

文章目录 1. Pytorch测试代码2. TensorFlow测试代码 后续遇到好的会不断更新。。。 1. Pytorch测试代码 import torch def gpu_is_available():print(\nGPU details:)print(f gpu_is_available : , torch.cuda.is_available())print(f cuda_device_count : , t…...

字符串逆序输出

逆序输出就是本来abc输出的,然后我想让他输出成cba,那么我们还是要用到for循环,只不过原先是从零开始往上加,这回呢,是从上面往下减 我们观察上面这个图片,我们想要输出olleh,那么我们就要从4开…...

期货平仓日历(期货平仓日期汇总)

什么是期货平仓日历? 期货是一种高风险高收益的投资品种。而期货交易不同于股票等其他投资品种的交易,期货交易需要在一定时间内才能买卖。而期货平仓日历就是指期货交易中规定的所有合约的平仓日期汇总。 常见期货平仓日期和时间? 不同的…...

计算机网络-进阶

目录 易混淆物理层数据链路层网络层nat如何实现私有ip通信IP数据报 格式解析tcp 连接tcp流量控制滑动窗口拥塞控制 报文捕获 wireshark路由模拟器 enspcdn代理服务器 VS cdn VS web cache 计算机有了物理地址,为什么还要有ip地址?单播 多播 广播 传输层会…...

LED恒流驱动芯片SM2188EN:满足LED灯具出口欧盟所需的ERP能效认证标准和要求

LED灯具是一种节能环保的照明产品,因其高效节能、长寿命等优点而备受消费者青睐,成为照明市场的主流产品。作为LED灯具出口欧盟市场的必备条件,ERP能效认证标准和要求对LED灯具的能效性能提出了严格的要求。 首先,ERP能效认证标准…...

RocketMQ系统性学习-RocketMQ原理分析之消费者的接收消息流程

🌈🌈🌈🌈🌈🌈🌈🌈 【11来了】文章导读地址:点击查看文章导读! 🍁🍁🍁🍁🍁🍁&#x1f3…...

butterfly蝴蝶分类

一、分类原因 由于植物分类所使用的数据集存在一定问题,修改起来比较麻烦,本次采用kaggle的ButterflyMothsImageClassification数据集,对100这种蝴蝶进行分类。 二、100中蝴蝶类别 ‘ADONIS’,‘AFRICAN GIANT SWALLOWTAIL’,‘AMERICAN S…...

计算机基础:网络基础

目录 一.网线制作 1.制作所需要工具 网线制作标准 ​编辑 2.水晶头使用 3.网线钳使用 4.视频教学 二.集线器、交换机介绍 1.OSI七层模型 2.TCP/IP四层参考模型 3.集线器、交换机。路由器介绍 集线器 交换机 路由器 区别 三.路由器的配置 1.路由器设置 说明书 设…...

[原创][R语言]股票分析实战[3]:周级别涨幅趋势的相关性

[简介] 常用网名: 猪头三 出生日期: 1981.XX.XX QQ联系: 643439947 个人网站: 80x86汇编小站 https://www.x86asm.org 编程生涯: 2001年~至今[共22年] 职业生涯: 20年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、D…...

MSVC编译 openssl windows 库

开发需要在windows下集成 openssl 库,参考官方指导完成了编译:openssl/NOTES-WINDOWS.md at master openssl/openssl 不过,最后还是走了直接下载的捷径。 1. 安装 ActivePerl 需要在 ActiveState 注册账户,之后彼会提供具体的…...

electron兼容统信UOS系统过程中的坑

这里写目录标题 找统信支持人员咨询过,他们说不对electron提供支持,如果需要兼容统信UOS还是建议换个开发技术gbm_bo_map--no-sandboxNo protocol specified任务栏图标总结 找统信支持人员咨询过,他们说不对electron提供支持,如果…...

Flink系列之:Apache Kafka SQL 连接器

Flink系列之:Apache Kafka SQL 连接器 一、Apache Kafka SQL 连接器二、依赖三、创建Kafka 表四、可用的元数据五、连接器参数六、特性七、Topic 和 Partition 的探测八、起始消费位点九、有界结束位置十、CDC 变更日志(Changelog) Source十一…...

灰盒测试简要学习指南!

在本文中,我们将了解什么是灰盒测试、以及为什么要使用它,以及它的优缺点。 在软件测试中,灰盒测试是一种有用的技术,可以确保发布的软件是高性能的、安全的并满足预期用户的需求。这是一种从外部测试应用程序同时跟踪其内部操作…...

【经典LeetCode算法题目专栏分类】【第7期】快慢指针与链表

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 快慢指针 移动零 class…...

springboot解决XSS存储型漏洞

springboot解决XSS存储型漏洞 XSS攻击 XSS 攻击:跨站脚本攻击(Cross Site Scripting),为不和 前端层叠样式表(Cascading Style Sheets)CSS 混淆,故将跨站脚本攻击缩写为 XSS。 XSS(跨站脚本攻击):是指恶意攻击者往 Web 页面里插…...

I.MX6ULL_Linux_驱动篇(47)linux RTC驱动

RTC 也就是实时时钟,用于记录当前系统时间,对于 Linux 系统而言时间是非常重要的,就和我们使用 Windows 电脑或手机查看时间一样,我们在使用 Linux 设备的时候也需要查看时间。本章我们就来学习一下如何编写 Linux 下的 RTC 驱动程…...

详解IBM企业架构框架模型CBM

(一):什么是CBM IBM的CBM是组件化业务模型(Component Business Model),是IBM在2003年提出的一种业务架构方法论。 目的是通过将企业的业务活动划分为一些独立、模块化、可重用的业务组件,来识…...

宝塔面板安装MySQL数据库并通过内网穿透工具实现公网远程访问

文章目录 前言1.Mysql 服务安装2.创建数据库3.安装 cpolar3.2 创建 HTTP 隧道 4.远程连接5.固定 TCP 地址5.1 保留一个固定的公网 TCP 端口地址5.2 配置固定公网 TCP 端口地址 前言 宝塔面板的简易操作性,使得运维难度降低,简化了 Linux 命令行进行繁琐的配置,下面简单几步,通…...

Elasticsearch 性能调优基础知识

Elastic Stack 已成为监控任何环境或应用程序的实际解决方案。 从日志、指标和正常运行时间到性能监控甚至安全,Elastic Stack 已成为满足几乎所有监控需求的一体化解决方案。 Elasticsearch 通过提供强大的分析引擎来处理任何类型的数据,成为这方面的基…...

速盾网络:网络安全守护者

速盾网络作为一家专业的网络安全服务提供商,致力于为企业和个人提供全面、高效、可靠的网络安全解决方案。以下是速盾网络的主要业务介绍: 一、CDN加速 速盾网络拥有全球化的CDN加速网络,通过分布在全球各地的节点,为客户提供快速…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

浅谈不同二分算法的查找情况

二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况&#xf…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

基于Springboot+Vue的办公管理系统

角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...