当前位置: 首页 > news >正文

图论 | 网络流的基本概念

文章目录

    • 流网路
    • 残留网络
    • 增广路径
    • 最大流最小割定理
    • 最大流
      • Edmonds-Karp 算法
        • 算法步骤
        • 程序代码
        • 时间复杂度

流网路

流网络: G = ( V , E ) G = (V, E) G=(V,E)

在这里插入图片描述

  • 有向图,不考虑反向边
  • s:源点
  • t:汇点
  • c ( u , v ) c(u, v) c(u,v):边的最大容量
  • 可行流 f f f
    • 容量限制: 0 ≤ f ( u , v ) ≤ c ( u , v ) 0 \leq f(u, v) \leq c(u, v) 0f(u,v)c(u,v)
    • 流量守恒:除了源点和汇点,所有点满足 流入 = 流出 流入 = 流出 流入=流出
  • ∣ f ∣ |f| f:可行流的流量,即从源点流向汇点的速率。一种通用的解释是 从源点流出的流量 − 流入源点的流量 从源点流出的流量 - 流入源点的流量 从源点流出的流量流入源点的流量
  • 最大流:最大可行流

残留网络

残留网络定义:一个可行流流网络 f f f 对应一个残留网络 G f G_f Gf

  • 点集:与原图的点集一样 V f = V V_f = V Vf=V
  • 边集:不仅包含原图的边,同时包含所有边的方向边,即 E f = E 和 E 中的所有反向边 E_f = E 和 E中的所有反向边 Ef=EE中的所有反向边
  • 边的容量: c f ( u , v ) c_f(u, v) cf(u,v)
    • 原图中的边:剩下的容量,即 c ( u , v ) − f ( u , v ) c(u, v) - f(u, v) c(u,v)f(u,v)
    • 反向边:可以退回的流量,即 f ( v , u ) f(v, u) f(v,u)

重要结论:原网络的可行流 f f f 加上可行流对应的残留网络 G f G_f Gf,也是一个可行流

  • 对应边相加:若方向同则相加;若反向反则相减
  • 结论: ∣ f + f ′ ∣ = ∣ f ∣ + ∣ f ′ ∣ |f + f'| = |f| + |f'| f+f=f+f
  • 进一步,若残留网络没有可行流,那么原网络的可行流就一定是最大流

增广路径

在残留网络里,如果沿着容量大于 0 的边走,能走到汇点,则这条路径叫做增广路径

  • 若存在一个增广路径,根据 ∣ f + f ′ ∣ = ∣ f ∣ + ∣ f ′ ∣ |f + f'| = |f| + |f'| f+f=f+f,原来的可行流一定不是最大流
  • 若不存在增广路径,我们可以得出当前可行流就是最大流

将点集 V 分成 S 和 T 两个子集

  • 分割要满足 S ∪ T = V , S ∩ T = ∅ S ∪ T = V, S ∩ T = \emptyset ST=VST=
  • 点集不一定连通

割的容量: c ( S , T ) = ∑ u ∈ S ∑ v ∈ T c ( u , v ) c(S, T) = \sum_{u ∈ S} \sum_{v ∈ T} c(u, v) c(S,T)=uSvTc(u,v)

  • 最小割:最小割的容量
  • 割的容量不考虑反向边

割的流量: f ( S , T ) = ∑ u ∈ S ∑ v ∈ T f ( u , v ) − ∑ u ∈ T ∑ v ∈ S f ( u , v ) f(S, T) = \sum_{u ∈ S} \sum_{v ∈ T} f(u, v) - \sum_{u ∈ T} \sum_{v ∈ S} f(u, v) f(S,T)=uSvTf(u,v)uTvSf(u,v)

  • 流过去的流量减去流过来的流量
  • 割的流量考虑反向边

重要性质:

  • 对于任意一个割,割的流量一定小于等于割的容量,即 f ( S , T ) ≤ c ( S , T ) f(S, T) \leq c(S, T) f(S,T)c(S,T)

  • 割的流量等于原流网络的流量,即 f ( S , T ) = ∣ f ∣ f(S,T) = |f| f(S,T)=f

  • f ( X , Y ) = − f ( Y , X ) f(X, Y) = -f(Y, X) f(X,Y)=f(Y,X)

  • f ( Z , X ∪ Y ) = f ( Z , X ) + f ( Z , Y ) f(Z, X ∪ Y) = f(Z, X) + f(Z, Y) f(Z,XY)=f(Z,X)+f(Z,Y)

  • f ( X ∪ Y , Z ) = f ( X , Z ) + f ( Y , Z ) f(X ∪ Y, Z) = f(X, Z) + f(Y, Z) f(XY,Z)=f(X,Z)+f(Y,Z)

最大流最小割定理

以下三个条件是等价的

  1. 可行流 f f f 是最大流
  2. 可行流 f f f 的残留网络中不存在增广路
  3. 存在某个割 [ S , T ] [S, T] [S,T] ∣ f ∣ = c ( S , T ) |f| = c(S, T) f=c(S,T)

最大流

Edmonds-Karp 算法

算法步骤

维护流网络的残留网络,不断进行以下流程:

  1. 找一条增广路 f ′ f' f:可以用 BFS 进行搜索
  2. 更新残留网络 G f → G f + f ′ G_f → G_{f + f'} GfGf+f
程序代码
#include <iostream>
#include <algorithm>
#include <cstring>using namespace std;const int N = 1010, M = 20020, INF = 1e8;// 邻接表存储残留网络
// 正向边和反向边成对存在,正向边的下标异或上1得到方向边的下标
int n, m, S, T;
int h[N], e[M], f[M], ne[M], idx;  // f表示容量
int q[N], d[N], pre[N];
bool st[N];  // 避免重复搜索void add(int a, int b, int c)
{// 正向边 e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;// 反向边,初始容量为0e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}// bfs找增广路
bool bfs()
{int hh = 0, tt = 0;memset(st, false, sizeof(st));q[0] = S, st[S] = true, d[S] = INF;while(hh <= tt) {// 从队列中弹出一个元素进行BFSint t = q[hh++];for(int i = h[t]; ~i; i = ne[i]) {// 节点t的临接边i的下一节点verint ver = e[i];// 没遍历过且边i的容量不为0if( !st[ver] && f[i] ) {st[ver] = true;// 流到节点ver的流量为流到t的流量和边i容量的最小值d[ver] = min(d[t], f[i]);// 记录节点ver前驱边的编号pre[ver] = i;if(ver == T)  return true;// ver入队q[++tt] = ver;}}}return false;
}// EK 算法
int EK()
{int r = 0;while( bfs() ) {// 加上增广路的流量r += d[T];// 更新残留网络for(int i = T; i != S; i = e[pre[i] ^ 1]) {// 正向边更新f[pre[i]] -= d[T];// 反向边更新f[pre[i] ^ 1] += d[T];}}return r;
}int main()
{// 点数、边数、源点、汇点cin >> n >> m >> S >> T;// 初始化邻接表memset(h, -1, sizeof(h));while( m-- ) {int a, b, c;// 边ab的容量为ccin >> a >> b >> c;add(a, b, c);}cout << EK() << endl;return 0;
}
时间复杂度

O ( V E 2 ) O(VE^2) O(VE2)

相关文章:

图论 | 网络流的基本概念

文章目录 流网路残留网络增广路径割最大流最小割定理最大流Edmonds-Karp 算法算法步骤程序代码时间复杂度 流网路 流网络&#xff1a; G ( V , E ) G (V, E) G(V,E) 有向图&#xff0c;不考虑反向边s&#xff1a;源点t&#xff1a;汇点 c ( u , v ) c(u, v) c(u,v)&#xff…...

【音视频 | AAC】AAC音频编码详解

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

redis基本用法学习(C#调用NRedisStack操作redis)

redis官网文档中推荐C#中使用NRedisStack包连接并操作redis&#xff0c;本文学习C#调用NRedisStack操作redis的基本方式。   新建Winform项目&#xff0c;在Nuget包管理器中搜索并安装NRedisStack包&#xff0c;如下图所示&#xff1a; 主要调用StackExchange.Redis命名空间下…...

[CVPR 2023:3D Gaussian Splatting:实时的神经场渲染]

文章目录 前言小结 原文地址&#xff1a;https://blog.csdn.net/qq_45752541/article/details/132854115 前言 mesh 和点是最常见的3D场景表示&#xff0c;因为它们是显式的&#xff0c;非常适合于快速的基于GPU/CUDA的栅格化。相比之下&#xff0c;最近的神经辐射场&#xf…...

【SpringBoot快速入门】(4)SpringBoot项目案例代码示例

目录 1 创建工程3 配置文件4 静态资源 之前我们已经学习的Spring、SpringMVC、Mabatis、Maven&#xff0c;详细讲解了Spring、SpringMVC、Mabatis整合SSM的方案和案例&#xff0c;上一节我们学习了SpringBoot的开发步骤、工程构建方法以及工程的快速启动&#xff0c;从这一节开…...

Linux服务器 部署飞书信息发送服务

项目介绍&#xff1a; 飞书信息发送服务是指将飞书信息发送服务部署到一个Linux服务器上。飞书是一款企业级的即时通讯和协作工具&#xff0c;支持发送消息给飞书的功能。通过部署飞书信息发送服务&#xff0c;可以方便内网发送信息给外网飞书。 项目代码结构展示&#xff1a; …...

用C#也能做机器学习?

前言✨ 说到机器学习&#xff0c;大家可能都不陌生&#xff0c;但是用C#来做机器学习&#xff0c;可能很多人还第一次听说。其实在C#中基于ML.NET也是可以做机器学习的&#xff0c;这种方式比较适合.NET程序员在项目中集成机器学习模型&#xff0c;不太适合专门学习机器学习&a…...

Python PDF格式转PPT格式

要将PDF文件转换为PPT&#xff0c;我实在python3.9 环境下转成功的&#xff0c;python3.11不行。 需要 pip install PyMuPDF代码说话 # -*- coding: utf-8 -*-""" author: 赫凯 software: PyCharm file: xxx.py time: 2023/12/21 11:20 """im…...

搭建知识付费平台?明理信息科技为你提供全程解决方案

明理信息科技saas知识付费平台 在当今数字化时代&#xff0c;知识付费已经成为一种趋势&#xff0c;越来越多的人愿意为有价值的知识付费。然而&#xff0c;公共知识付费平台虽然内容丰富&#xff0c;但难以满足个人或企业个性化的需求和品牌打造。同时&#xff0c;开发和维护…...

漫谈UNIX、Linux、UNIX-Like

漫谈UNIX、Linux、UNIX-Like 使用了这么多年Redhat、Ubuntu等Linux、Windows、Solaris操作系统&#xff0c;你是否对UNIX、Unix-Like&#xff08;类UNIX&#xff09;还是不太清楚&#xff1f;我以前一直认为Unix-Like就等于Linux。其实&#xff0c;由UNIX派生出来而没有取得UN…...

Netty Review - Netty与Protostuff:打造高效的网络通信

文章目录 概念PrePomServer & ClientProtostuffUtil 解读测试小结 概念 Pre 每日一博 - Protobuf vs. Protostuff&#xff1a;性能、易用性和适用场景分析 Pom <dependency><groupId>com.dyuproject.protostuff</groupId><artifactId>protostuff-…...

在ClickHouse数据库中启用预测功能

在这篇博文中&#xff0c;我们将介绍如何将机器学习支持的预测功能与 ClickHouse 数据库集成。ClickHouse 是一个快速、开源、面向列的 SQL 数据库&#xff0c;对于数据分析和实时分析非常有用。该项目由 ClickHouse&#xff0c; Inc. 维护和支持。我们将探索它在需要数据准备以…...

目标检测YOLO实战应用案例100讲-树上果实识别与跟踪计数(续)

目录 3.2 损失函数优化 3.3 实验过程 3.3.1 果实图像采集 3.3.2 数据扩增...

Docker 文件和卷 权限拒绝

一 创作背景 再复制Docker影像文件或访问Docker容器内已安装卷上的文件时我们常常会遇到&#xff1a;“权限被拒绝”的错误&#xff0c;在此&#xff0c;您将了解到为什么会出现“权限被拒绝”的错误以及如何解决这个问题。 二 目的 在深入探讨 Docker 容器中的 Permission De…...

Appium Server 启动失败常见原因及解决办法

Error: listen EADDRINUSE: address already in use 0.0.0.0:4723 如下图&#xff1a; 错误原因&#xff1a;Appium 默认的4723端口被占用 解决办法&#xff1a; 出现该提示&#xff0c;有可能是 Appium Server 已启动&#xff0c;关闭已经启动的 Appium Server 即可。472…...

将Abp默认事件总线改造为分布式事件总线

文章目录 原理创建分布式事件总线实现自动订阅和事件转发 使用启动Redis服务配置传递Abp默认事件传递自定义事件 项目地址 原理 本地事件总线是通过Ioc容器来实现的。 IEventBus接口定义了事件总线的基本功能&#xff0c;如注册事件、取消注册事件、触发事件等。 Abp.Events…...

Jupyter Notebook修改默认工作目录

1、参考修改Jupyter Notebook的默认工作目录_jupyter文件路径-CSDN博客修改配置文件 2.在上述博客内容的基础上&#xff0c;这里不是删除【%USERPROFILE%】而是把这个地方替换为所要设置的工作目录路径&#xff0c; 3.【起始位置】也可以更改为所要设置的工作目录路径&#x…...

高校/企业如何去做数据挖掘呢?

随着近年来人工智能及大数据、云计算进入爆发时期&#xff0c;依托三者进行的数据分析、数据挖掘服务已逐渐成为各行业进行产业升级的载体&#xff0c;缓慢渗透进我们的工作和生活&#xff0c;成为新时代升级版的智能“大案牍术”。 那么对于多数企业来说&#xff0c;如何做数据…...

数据仓库-数据治理小厂实践

一、简介 数据治理贯穿数仓中数据的整个生命周期&#xff0c;从数据的产生、加载、清洗、计算&#xff0c;再到数据展示、应用&#xff0c;每个阶段都需要对数据进行治理&#xff0c;像有些比较大的企业都是有自己的数据治理平台或者会开发一些便捷的平台&#xff0c;对于没有平…...

【C++多线程编程】(五)之 线程生命周期管理join() 与 detach()

在C中&#xff0c;std::thread 类用于创建和管理线程。std::thread 提供了两种主要的方法来控制线程的生命周期&#xff1a;join 和 detach。 detach方式&#xff0c;启动的线程自主在后台运行&#xff0c;当前的代码继续往下执行&#xff0c;不等待新线程结束。join方式&…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...