智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.学校优化算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用学校优化算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.学校优化算法
学校优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/121052583
学校优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
学校优化算法参数如下:
%% 设定学校优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明学校优化算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.学校优化算法4.实验参数设定5.算法结果6.…...

【MATLAB第85期】基于MATLAB的2023年智能进化算法/元启发式算法合集(持续更新)
【MATLAB第85期】基于MATLAB的2023年智能进化算法/元启发式算法合集(持续更新) 1.海象进化算法(Walrus Optimization Algorithm) 作者:Pavel Trojovsk and Mohammad Dehghani 2.暴龙优化算法(Tyrannosa…...
[Realtek sdk-3.4.14b]RTL8197FH-VG+RTL8812F WiFi使用功率限制功能使用说明
sdk说明 ** Gateway/AP firmware v3.4.14b – Aug 26, 2019** Wireless LAN driver changes as: Refine WiFi Stability and Performance Add 8812F MU-MIMO Add 97G/8812F multiple mac-clone Add 97G 2T3R antenna diversity Fix 97G/8812F/8814B MP issu…...

Vue中为什么data属性是一个函数而不是一个对象?(看完就会了)
文章目录 一、实例和组件定义data的区别二、组件data定义函数与对象的区别三、原理分析四、结论 一、实例和组件定义data的区别 vue实例的时候定义data属性既可以是一个对象,也可以是一个函数 const app new Vue({el:"#app",// 对象格式data:{foo:&quo…...
Linux中一些知识积累(持续补充)
如何安装Eigen3库? 在linux中直接命令安装。Eigen/Dense 是 Eigen 库中的一个模块,提供了对密集矩阵(Dense Matrix)的支持。 sudo apt install libeigen3-devLinux 中VScode中运行C时,gdb 的Launch与Attach有什么区别…...

内网渗透基础
内网 内网指的是内部局域网,常说的LAN(local area network)。常见家庭wifi网络和小型的企业网络,通常内部计算机直接访问路由器设备,路由器设备接入移动电信的光纤实现上网。 内部局域网可以通过交换机/防火墙组成多个…...

【2023年网络安全优秀创新成果大赛专刊】银行数据安全解决方案(天空卫士)
在2023年网络安全优秀创新成果大赛,成都分站中,天空卫士银行数据安全方案获得优秀解决方案奖。与此同时,天空卫士受信息安全杂志邀请,编写《银行数据安全解决方案》。12月6日,天空卫士编写的《银行数据安全解决方案》做…...

嵌入式串口输入详细实例
学习目标 掌握串口初始化流程掌握串口输出单个字符掌握串口输出字符串掌握通过串口printf熟练掌握串口开发流程学习内容 需求 串口循环输出内容到PC机。 串口数据发送 添加Usart功能。 首先,选中Firmware,鼠标右键,点击Manage Project Items 接着,将gd32f4xx_usart.c添…...
springboot(ssm智慧生活商城系统 网上购物系统Java系统
springboot(ssm智慧生活商城系统 网上购物系统Java系统 开发语言:Java 框架:ssm/springboot vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.7(或8.0) 数…...

Peter算法小课堂—贪心与二分
太戈编程655题 题目描述: 有n辆车大甩卖,第i辆车售价a[i]元。有m个人带着现金来申请购买,第i个到现场的人带的现金为b[i]元,只能买价格不超过其现金额的车子。你是大卖场总经理,希望将车和买家尽量多地进行一对一配对…...

搭建Vue前端项目的流程
1、安装nodejs 测试安装是否成功 $ npm -v 6.14.16 $ node -v v12.22.122、全局安装npm install -g vue/cli,后续会使用到vue命令 $ vue --version vue/cli 5.0.8使用vue create demo_project_fe命令创建项目,使用箭头键来选择,确认使用回车…...

1.使用 Blazor 利用 ASP.NET Core 生成第一个 Web 应用
参考 https://dotnet.microsoft.com/zh-cn/learn/aspnet/blazor-tutorial/create 1.使用vs2022创建新项目 选择 C# -> Windows -> Blzxor Server 应用模板 2.项目名称BlazorApp下一步 3.选择 .NET6.0 或 .NET7.0 或 .NET8.0 创建 4.运行BlazorApp 5.全部选择是。 信…...

如何入门 GPT 并快速跟上当前的大语言模型 LLM 进展?
入门GPT 首先说第一个问题:如何入门GPT模型? 最直接的方式当然是去阅读官方的论文。GPT模型从2018年的GPT-1到现在的GPT-4已经迭代了好几个版本,通过官方团队发表的论文是最能准确理清其发展脉络的途径,其中包括GPT模型本身和一…...

【pentaho】kettle读取Hive表不支持bigint和timstamp类型解决。
一、bigint类型 报错: Unable to get value BigNumber(16) from database resultset显示kettle认为此应该是decimal类型(kettle中是TYPE_BIGNUMBER或称BigNumber),但实际hive数据库中是big类型。 修改kettle源码解决: kettle中java.sql.Types到kettle…...
centos 8 部署nextCloud
参考链接: Example installation on CentOS 8 — Nextcloud latest Administration Manual latest documentation 第一次 在RHEL 9.2部署,部署完成后,上传任意文件提示: 与服务器断开链接 发生未知错误 第二次 计划在centos…...

vue3 element-plus 输入框 clearable属性 聚焦时宽度会变化
解决办法 因为你的代码中el-input是没有宽度的, 所以实际渲染出来的 el-input宽度 原生input宽度 前缀图标宽度 后缀图标宽度。 可以写css固定el-input宽度来处理。 :deep.el-input.el-input--default.el-input--suffix {// 固定宽度width: 200px !important; …...

【科技前沿】数字孪生技术改革智慧供热,换热站3D可视化引领未来
换热站作为供热系统不可或缺的一部分,其能源消耗对城市环保至关重要。在双碳目标下,供热企业可通过搭建智慧供热系统,实现供热方式的低碳、高效、智能化,从而减少碳排放和能源浪费。通过应用物联网、大数据等高新技术,…...

Vue.js 教程
Vue.js(读音 /vjuː/, 类似于 view) 是一套构建用户界面的渐进式框架。 Vue 只关注视图层, 采用自底向上增量开发的设计。 Vue 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。 阅读本教程前,您需要了解的…...

听GPT 讲Rust源代码--src/tools(21)
File: rust/src/tools/miri/src/shims/x86/mod.rs 在Rust的源代码中,rust/src/tools/miri/src/shims/x86/mod.rs文件的作用是为对x86平台的处理提供支持。它包含一些用于模拟硬件操作的shim函数和相关的类型定义。 具体来说,该文件中的函数是通过使用一组…...

OpenCV | 告别人工目检:深度学习技术引领工业品缺陷检测新时代
文章目录 机器视觉缺陷检测工业上常见缺陷检测方法内容简介作者简介目录读者对象如何阅读本书获取方式 机器视觉 机器视觉是使用各种工业相机,结合传感器跟电气信号实现替代传统人工,完成对象识别、计数、测量、缺陷检测、引导定位与抓取等任务。其中工…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...