当前位置: 首页 > news >正文

深度学习(Deep Learning) 简介

深度学习(Deep Learning)

深度学习在海量数据情况下的效果要比机器学习更为出色。

多层神经网络模型

神经网络

有监督机器学习模型

  • 输入层
  • 隐藏层 (黑盒)
  • 输出层

概念:

  • 神经元 Neuron A^(n+1)
  • 网络权重 Weights W^n
  • 偏移 bias b^n

激活函数:

  • ReLU
  • tanh
  • Sigmoid

点击查看激活函数详情: https://blog.csdn.net/galoiszhou/article/details/135154697

监督类机器学习模型的目标就是在给定一个任务的情况下,找到最优化的参数,使得 Loss 损失值最小,其中 Loss 损失值就是预测结果和真实结果之间的误差。

神经网络的目标就是在给定一个任务的情况下,找到最优的Weights 和 bias,使得 Loss 最低。

CNN

图像识别这项技术已经发展得很成熟,卷积神经网络(Convolutional Neural Networks,CNN)又是其中的主流技术

  • 神经网络
    • 输入层
    • 隐藏层
      • 特征提取层
        • 卷积层
        • 激活函数
        • 池化层
      • 全连接层
    • 输出层
  • CNN

任意一张彩色图片都可以表示成一个三阶张量,即三维数组。所有彩色图像都是由红、绿、蓝(RGB)叠加而成的.

CNN 网络模型的数据输入就是将彩色图像分解为 R、G、B 这 3 个通道,其中每个通道的值都在 0 到 255 之间。

过滤掉干扰信息,并且识别图像中的主体信息, 做法就是不断模糊化一张图片. 通过 CNN 的卷积和池化来实现

在完成各层的卷积运算后,深度学习模型还需要进行非线性的变换,非线性的变换是通过增加激活函数来实现的,通过激活函数将“线性回归”拟合的直线编程曲线.

池化的目的也是提取特征,减少向下一阶段传递的数据量,池化过程的本质是“丢弃”,即只保留图像主体特征,过滤掉无关信息的数据特征。

CNN 的所有卷积和池化操作都是在提取特征,直到全连接层才进入真正的训练学习阶段,做最后的分类计算。

在 CNN 中,全连接层一般是用的是 Softmax 函数来进行分类.

深度学习的优点:

  • 可以拟合任意复杂的数据分布
  • 性能好

深度学习的缺点:

  • 可解释性非常的差
  • 非常消耗资源
  • 对数据依赖很强
  • 模型复杂

深度学习适用的样本数据:

  • 图像数据
    深度学习在图像处理领域取得了巨大成功。它可以用于图像分类、目标检测、图像生成等任务。图像数据通常表示为像素的数值矩阵。
  • 语音和音频数据
    深度学习在语音识别、语音生成和音频处理等方面取得了显著的成果。声波信号的时域或频域表示可作为输入进行处理。
  • 文本和自然语言数据
    深度学习在自然语言处理领域广泛应用,包括文本分类、命名实体识别、机器翻译等任务。文本数据通常以词向量或嵌入表示。
  • 时间序列数据
    深度学习在处理时间序列数据(如股票价格、气象数据、生物传感器数据)方面非常有效。循环神经网络(RNN)和长短时记忆网络(LSTM)等模型常用于处理时间序列。
  • 视频数据
    视频数据是一系列帧的集合,深度学习可用于视频分类、动作识别、目标跟踪等任务。卷积神经网络(CNN)和时空卷积网络(3D CNN)是处理视频数据的常见模型。
  • 医学图像数据
    在医学领域,深度学习被广泛应用于医学图像的分析,如病理学图像、医学影像(CT、MRI等)的分割和识别。
  • 传感器数据
    传感器产生的数据,例如加速度计、陀螺仪、GPS 数据等,可以通过深度学习进行分析。这在物联网(IoT)和智能设备领域有广泛应用。
  • 社交媒体数据
    深度学习可用于处理社交媒体上的文本、图像和视频数据,用于情感分析、用户推荐、图像标注等任务。
  • 游戏数据
    在游戏领域,深度学习可以用于强化学习,训练智能体玩游戏,并在复杂的游戏环境中做出智能决策。
  • 生物信息学数据
    深度学习在处理生物信息学数据,如基因组数据、蛋白质序列等方面也有应用,例如基因表达模式的分析。

深度学习的场景:

  • 计算机视觉
    • 图像分类 通过深度学习,可以训练模型对图像进行准确的分类,应用于物体识别、图像检索等。
    • 目标检测 深度学习模型可以检测图像中的多个对象,并标识它们的位置,用于自动驾驶、视频监控等。
    • 图像分割 用于将图像分割成具有语义意义的区域,例如医学图像分割、自然场景分割等。
  • 自然语言处理(NLP)
    • 文本分类 用于情感分析、垃圾邮件过滤、新闻分类等。
    • 机器翻译 利用深度学习模型实现更准确和流畅的翻译。
    • 文本生成 生成自然语言文本,如文章摘要、对话生成等。
  • 语音处理
    • 语音识别 将语音信号转换为文本,应用于语音助手、语音搜索等。
    • 语音生成 通过深度学习生成自然流畅的语音,用于语音合成系统。
  • 推荐系统
    • 个性化推荐 利用深度学习分析用户行为,实现更准确的个性化推荐,如音乐、电影、商品推荐等。
  • 医学图像分析
    • 病理图像分析 用于癌症检测、肿瘤分析等。
    • 医学影像识别 在CT、MRI等医学影像中识别疾病和异常。
  • 自动驾驶
    • 图像处理 通过深度学习对车辆周围环境进行实时识别和分析,实现自动驾驶决策。
  • 金融欺诈检测
    • 交易分析 通过深度学习分析金融交易数据,识别潜在的欺诈行为。
  • 游戏开发
    • 游戏智能体 利用深度学习实现游戏中的智能体,例如对弈游戏中的人工智能对手。
    • 物联网(IoT)
    • 传感器数据分析 利用深度学习对传感器数据进行实时分析,如智能家居、工业物联网等。
  • 人脸识别和生物特征识别
    • 人脸解锁: 通过深度学习模型进行人脸识别,用于手机解锁、门禁系统等。
    • 生物特征识别: 例如指纹识别、虹膜识别等。

相关文章:

深度学习(Deep Learning) 简介

深度学习(Deep Learning) 深度学习在海量数据情况下的效果要比机器学习更为出色。 多层神经网络模型 神经网络 有监督机器学习模型 输入层隐藏层 (黑盒)输出层 概念: 神经元 Neuron A^(n1)网络权重 Weights W^n偏移 bias b^n 激活函数: ReLUtan…...

服务器raid中磁盘损坏或下线造成阵列降级更换新硬盘重建方法

可能引起磁盘阵列硬盘下线或故障的情况: 硬件故障: 硬盘物理损坏:包括但不限于坏道、电路板故障、磁头损坏、盘片划伤、电机故障等。连接问题:如接口损坏、数据线或电源线故障、SATA/SAS控制器问题等。热插拔错误:在不…...

Ubuntu 常用命令之 exit 命令用法介绍

📑Linux/Ubuntu 常用命令归类整理 exit命令在Ubuntu系统下用于结束一个终端会话。它可以用于退出当前的shell,结束当前的脚本执行,或者结束一个ssh会话。 exit命令的参数是一个可选的整数,用于指定退出状态。如果没有指定&#…...

依托亚马逊云科技构建韧性应用

背景 现代业务系统受到越来越多的韧性相关的挑战,特别是客户要求他们的业务系统 724 不间断的运行。因此,韧性对于云的基础设施和应用系统有着至关重要的作用。 亚马逊云科技把韧性视为一项最基本的工作,为了让我们的业务系统能持续优雅地提供…...

Prometheus-JVM

一. JVM监控 通过 jmx_exporter 启动端口来实现JVM的监控 Github Kubernetes Deployment Java 服务,修改 wget https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.19.0/jmx_prometheus_javaagent-0.19.0.jar# 编写配置文件&#xff0…...

flink sql1.18.0连接SASL_PLAINTEXT认证的kafka3.3.1

阅读此文默认读者对docker、docker-compose有一定了解。 环境 docker-compose运行了一个jobmanager、一个taskmanager和一个sql-client。 如下: version: "2.2" services:jobmanager:image: flink:1.18.0-scala_2.12container_name: jobmanagerports:…...

pytorch张量的创建

张量的创建 张量(Tensors)类似于NumPy的ndarrays ,但张量可以在GPU上进行计算。从本质上来说,PyTorch是一个处理张量的库。一个张量是一个数字、向量、矩阵或任何n维数组。 import torch import numpy torch.manual_seed(7) # 固…...

Web自动化测试工具的优势分析

Web自动化测试工具在现代软件开发中扮演着关键的角色,帮助团队确保Web应用程序的质量和稳定性。然而,选择合适的Web自动化测试工具对项目的成功至关重要。本文将介绍Web自动化测试工具优势是什么! 1. 自动化执行 Web自动化测试工具能够模拟用户的行为&am…...

黑豹程序员-读properties属性文件本地正常,打包jar后运行出错

读properties属性文件本地正常,打包jar后运行出错 java.io.FileNotFoundException:file:\D:\code\xml-load\target\XX.jar!\XXX(文件名、目录名或卷标语法不正确。)原因是读取方式不正确 当使用Spring Boot将应用打成jar时,需要读取resources目录下配置…...

PyQt6 QTimer计时器控件

锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计52条视频,包括:2024版 PyQt6 Python桌面开发 视频教程(无废话版…...

Vue:defineAsyncComponent(异步组件)、component(动态组件)、keep-alive(缓存组件)

异步组件:defineAsyncComponent Vue3 的 defineAsyncComponent 特性可以让我们延迟加载组件。因为在默认情况下,在构建项目或运行项目时,会将所有所需要的打包成一个整体,vue为单页面应用,同步加载大量的页面代码会导…...

14 款最佳文件恢复软件 [2024 年最佳精选工具]

顶级文件恢复软件的综合列表和比较。阅读此详细评论以选择最佳文件恢复工具并轻松恢复您的文件: 您在选择文件恢复工具时遇到困难吗?在阅读了对十大文件恢复软件的评论后,您可以做出正确的决定。 数据丢失是一个严重的问题,会损…...

Redis基础篇-004 Redis的Java客户端

Redis客户端分为三类&#xff1a; 命令行客户端图形化桌面客户端编程客户端&#xff08;java客户端&#xff09; redis可视化工具和客户端 1、 Jedis快速入门 Jedis的官网地址&#xff1a; https://github.com/redis/jedis 1.1 新建一个Maven工程并引入以下依赖 <!--引入…...

【数据结构和算法】---栈和队列的互相实现

目录 一、用栈实现队列1.1初始化队列1.2模拟入队列1.3模拟出队列1.4取模拟的队列头元素1.5判断队列是否为空 二、用队列实现栈2.1初始化栈2.2模拟出栈2.3模拟入栈2.4取模拟的栈顶元素2.5判读栈是否为空 一、用栈实现队列 具体题目可以参考LeetCode232. 用栈实现队列 首先要想到…...

机场信息集成系统系列介绍(6):机场协同决策支持系统ACDM

目录 一、背景介绍 1、机场协同决策支持系统是什么&#xff1f; 2、发展历程 3、机场协同决策参与方 4、相关定义 二、机场协同决策ACDM的建设目标 &#xff08;一&#xff09;机场协同决策支持系统的宏观目标 1、实现运行数据共享和前序航班信息透明化 2、实现地面资源…...

GO设计模式——17、解释器模式(行为型)

目录 解释器模式&#xff08;Interpreter Pattern&#xff09; 解释器模式的核心角色&#xff1a; 优缺点 代码实现 解释器模式&#xff08;Interpreter Pattern&#xff09; 解释器模式&#xff08;Interpreter Pattern&#xff09;提供了评估语言的语法或表达式的方式&am…...

基于SSM的大学生兼职平台的设计与实现

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SSM的大学生兼职平台的设计与实现,j…...

Ignite内存配置

配置内存 #1.内存架构 #1.1.概述 Ignite内存架构通过可以同时在内存和磁盘上存储和处理数据及索引&#xff0c;得到了支持磁盘持久化的内存级性能。 多层存储的运行方式类似于操作系统&#xff08;例如Linux&#xff09;的虚拟内存。但是这两种类型架构之间的主要区别是&…...

前端基础vue路由懒加载

为什么用路由懒加载 首屏组件加载速度更快一些&#xff0c;解决白屏问题&#xff0c;常言道需要就加载&#xff0c;不需要就先放一边 懒加载定义 懒加载简单来说就是延迟加载或按需加载&#xff0c;即在需要的时候的时候进行加载。 使用 常用的懒加载方式有两种&#xff1a;即…...

C++系列第九篇 数据类型下篇 - 复合类型(指针高级应用)

系列文章 C 系列 前篇 为什么学习C 及学习计划-CSDN博客 C 系列 第一篇 开发环境搭建&#xff08;WSL 方向&#xff09;-CSDN博客 C 系列 第二篇 你真的了解C吗&#xff1f;本篇带你走进C的世界-CSDN博客 C 系列 第三篇 C程序的基本结构-CSDN博客 C 系列 第四篇 C 数据类型…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...