yolov5知识蒸馏
参考代码:https://github.com/Adlik/yolov5
https://cloud.tencent.com/developer/article/2160509
yolov5间的模型蒸馏,相同结构的。
配置参数
parser.add_argument('--t_weights', type=str, default='./weights/yolov5s.pt',help='initial teacher model weights path')
parser.add_argument('--t_cfg', type=str, default='models/yolov5s.yaml', help='teacher model.yaml path')
parser.add_argument('--d_output', action='store_true', default=False,help='if true, only distill outputs')
parser.add_argument('--d_feature', action='store_true', default=False,help='if true, distill both feature and output layers')
加载教师模型
Model
check_suffix(weights, '.pt') # check weights
pretrained = weights.endswith('.pt')
if pretrained:with torch_distributed_zero_first(LOCAL_RANK):weights = attempt_download(weights) # download if not found locallyckpt = torch.load(weights, map_location=device) # load checkpointmodel = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # createexclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keyscsd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersectmodel.load_state_dict(csd, strict=False) # loadLOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report# 这里添加加载教师模型# Teacher modelLOGGER.info(f'Loaded teacher model {t_cfg}') # reportt_ckpt = torch.load(t_weights, map_location=device) # load checkpointt_model = Model(t_cfg or t_ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)exclude = ['anchor'] if (t_cfg or hyp.get('anchors')) and not resume else [] # exclude keyscsd = t_ckpt['model'].float().state_dict() # checkpoint state_dict as FP32csd = intersect_dicts(csd, t_model.state_dict(), exclude=exclude) # intersectt_model.load_state_dict(csd, strict=False) # load
损失函数:
s_loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_sized_outputs_loss = compute_distillation_output_loss(pred, t_pred, model, d_weight=10)if opt.d_feature:d_feature_loss = compute_distillation_feature_loss(s_f, t_f, model, f_weight=0.1)loss = d_outputs_loss + s_loss + d_feature_losselse:loss = d_outputs_loss + s_loss
相关文章:
yolov5知识蒸馏
参考代码:https://github.com/Adlik/yolov5 https://cloud.tencent.com/developer/article/2160509 yolov5间的模型蒸馏,相同结构的。 配置参数 parser.add_argument(--t_weights, typestr, default./weights/yolov5s.pt,helpinitial teacher model wei…...
HUAWEI华为笔记本电脑MateBook D 14 2022款 i5 集显 非触屏(NbDE-WFH9)原装出厂Windows11系统21H2
链接:https://pan.baidu.com/s/1-tCCFwZ0RggXtbWYBVyhFg?pwdmcgv 提取码:mcgv 华为MageBookD14原厂WIN11系统自带所有驱动、出厂状态主题壁纸、Office办公软件、华为电脑管家、华为应用市场等预装软件程序 文件格式:esd/wim/swm 安装方式…...
微服务-springcloud(eureka实践, nacos实践)
Spring 体系图 版本关系 eureka 实践 1 父工程依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.14</version> </parent> <dependencyManage…...
Hadoop入门学习笔记——五、在虚拟机中部署Hive
视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 五、在虚拟机中部署Hive5.1. 在node1虚拟机安装MySQL5.2.…...
用Nest 实现大文件分片上传,加速工作效率神器
文件上传是常见需求,只要指定 content-type 为 multipart/form-data,内容就会以这种格式被传递到服务端: 服务端再按照 multipart/form-data 的格式提取数据,就能拿到其中的文件。 但当文件很大的时候,事情就变得不一样…...
将ncnn及opencv的mat存储成bin文件的方法
利用fstream,将ncnn及opencv的mat存储成bin文件。 ncnn::Mat to bin std::ios::binary标志指示文件以二进制模式进行读写, std::ofstream file("output_x86.bin", std::ios::binary); 将input_mat中的宽、高和通道数分别赋值给width、heig…...
dpdk原理概述及核心源码剖析
dpdk原理 1、操作系统、计算机网络诞生已经几十年了,部分功能不再能满足现在的业务需求。如果对操作系统做更改,成本非常高,所以部分问题是在应用层想办法解决的,比如前面介绍的协程、quic等,都是在应用层重新开发的框…...
VTK+QT配置(VS)
先根据vtk配置这个博客配置基本环境 然后把这个dll文件从VTK的designer目录复制到qt的对应目录里 记得这里是debug版本,你也可以配置release都一样的步骤,然后建立一个qt项目,接着配置包含目录,库目录,链接输入&…...
5G边缘计算:解密边缘计算的魔力
引言 你是否曾想过,网络可以更贴心、更智能地为我们提供服务?5G边缘计算就像是网络的小助手,时刻待命在你身边,让数字生活变得更加便捷。 什么是5G边缘计算? 想象一下,边缘计算就像是在离你最近的一层“云…...
Sentinel 流量治理组件教程
前言 官网首页:home | Sentinel (sentinelguard.io) 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形…...
C语言第五十九弹---介绍说明内存函数memcmp
使用C语言介绍说明内存函数memcmp memcmp是C语言标准库中的一个函数,用于比较两个内存区域的内容是否相同。 源代码: int memcmp(const void* ptr1, const void* ptr2, size_t num);ptr1和ptr2分别是要比较的两个内存区域的指针,num是要比较…...
jar混淆,防止反编译,Allatori工具混淆jar包
文章目录 Allatori工具简介下载解压配置config.xml注意事项 Allatori工具简介 官网地址:https://allatori.com/ Allatori不仅混淆了代码,还最大限度地减小了应用程序的大小,提高了速度,同时除了你和你的团队之外,任何人…...
linux中批量将HEIC转jpg
苹果目前已大量使用HEIC格式的照片,虽然上传到Windows系统的时候是会自动转为jpg的,但也经常会在很多场景中保留了HEIC格式,前两天就收到了一大堆HEIC文件,window10里都打不开,照片的插件是需要付费下载的,…...
听GPT 讲Rust源代码--src/tools(25)
File: rust/src/tools/clippy/clippy_lints/src/methods/suspicious_command_arg_space.rs 在Rust源代码中,suspicious_command_arg_space.rs文件位于clippy_lints工具包的methods目录下,用于实现Clippy lint SUSPICIOUS_COMMAND_ARG_SPACE。 Clippy是Ru…...
一款C++编写的数据可视化库Matplot++
它是基于著名的 Matplotlib 库(Python 中广泛使用的绘图库)构建的,旨在提供类似于 Matplotlib 的功能,但专门为 C 设计。Matplot 支持多种图表类型,包括线图、散点图、条形图、直方图、误差线图等,使数据可…...
paddle 56 将图像分类模型嵌入到目标检测中并实现端到端的部署(用图像分类模型进行目标检测切片分类)
目标检测在功能上一直是涵盖了图像分类的,其包含目标切片检测,目标切片分类。由于某些原因,需要将目标检测的功能退化为检测,忽略其切片分类,使用外部的分类模型。然而这样操作会使得其与原始的部署代码不兼容,为此博主实现将图像分类模型嵌入到目标检测中,并实现端到端…...
SQL手工注入漏洞测试(MySQL数据库)
一、实验平台 https://www.mozhe.cn/bug/detail/elRHc1BCd2VIckQxbjduMG9BVCtkZz09bW96aGUmozhe 二、实验目标 获取到网站的KEY,并提交完成靶场。 三、实验步骤 ①、启动靶机,进行访问查找可能存在注入的页面 ②、通过测试判断注入点的位置(id) (1)…...
JAVA WEB用POI导出EXECL多个Sheet
前端方法:调用exportInfoPid这个方法并传入要查询的id即可,也可以用其他参数看个人需求 function exportInfoPid(id){window.location.href 服务地址"/exportMdsRoutePid/"id; } 后端控制层代码 Controller Scope("prototype") R…...
@RequestBody详解:用于获取请求体中的Json格式参数
获取请求体中的Json格式参数 (RequestBody) 当前端将一些比较复杂的参数转换成Json字符串通过请求体传递过来给后端,这种时候就可以使用RequestBody注解获取请求体中的数据。 而json字符串是包含在请求体中的,使用请求体传参通常…...
AI日报:2024年人工智能对各行业初创企业的影响
欢迎订阅专栏 《AI日报》 获取人工智能邻域最新资讯 文章目录 2024年人工智能对初创企业的影响具体行业医疗金融服务运输与物流等 新趋势 2024年人工智能对初创企业的影响 2023年见证了人工智能在各个行业的快速采用和创新。随着我们步入2024年,人工智能初创公司正…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
