yolov5知识蒸馏
参考代码:https://github.com/Adlik/yolov5
https://cloud.tencent.com/developer/article/2160509
yolov5间的模型蒸馏,相同结构的。
配置参数
parser.add_argument('--t_weights', type=str, default='./weights/yolov5s.pt',help='initial teacher model weights path')
parser.add_argument('--t_cfg', type=str, default='models/yolov5s.yaml', help='teacher model.yaml path')
parser.add_argument('--d_output', action='store_true', default=False,help='if true, only distill outputs')
parser.add_argument('--d_feature', action='store_true', default=False,help='if true, distill both feature and output layers')
加载教师模型
Model
check_suffix(weights, '.pt') # check weights
pretrained = weights.endswith('.pt')
if pretrained:with torch_distributed_zero_first(LOCAL_RANK):weights = attempt_download(weights) # download if not found locallyckpt = torch.load(weights, map_location=device) # load checkpointmodel = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # createexclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keyscsd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersectmodel.load_state_dict(csd, strict=False) # loadLOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report# 这里添加加载教师模型# Teacher modelLOGGER.info(f'Loaded teacher model {t_cfg}') # reportt_ckpt = torch.load(t_weights, map_location=device) # load checkpointt_model = Model(t_cfg or t_ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)exclude = ['anchor'] if (t_cfg or hyp.get('anchors')) and not resume else [] # exclude keyscsd = t_ckpt['model'].float().state_dict() # checkpoint state_dict as FP32csd = intersect_dicts(csd, t_model.state_dict(), exclude=exclude) # intersectt_model.load_state_dict(csd, strict=False) # load
损失函数:
s_loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_sized_outputs_loss = compute_distillation_output_loss(pred, t_pred, model, d_weight=10)if opt.d_feature:d_feature_loss = compute_distillation_feature_loss(s_f, t_f, model, f_weight=0.1)loss = d_outputs_loss + s_loss + d_feature_losselse:loss = d_outputs_loss + s_loss
相关文章:
yolov5知识蒸馏
参考代码:https://github.com/Adlik/yolov5 https://cloud.tencent.com/developer/article/2160509 yolov5间的模型蒸馏,相同结构的。 配置参数 parser.add_argument(--t_weights, typestr, default./weights/yolov5s.pt,helpinitial teacher model wei…...

HUAWEI华为笔记本电脑MateBook D 14 2022款 i5 集显 非触屏(NbDE-WFH9)原装出厂Windows11系统21H2
链接:https://pan.baidu.com/s/1-tCCFwZ0RggXtbWYBVyhFg?pwdmcgv 提取码:mcgv 华为MageBookD14原厂WIN11系统自带所有驱动、出厂状态主题壁纸、Office办公软件、华为电脑管家、华为应用市场等预装软件程序 文件格式:esd/wim/swm 安装方式…...

微服务-springcloud(eureka实践, nacos实践)
Spring 体系图 版本关系 eureka 实践 1 父工程依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.14</version> </parent> <dependencyManage…...

Hadoop入门学习笔记——五、在虚拟机中部署Hive
视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 五、在虚拟机中部署Hive5.1. 在node1虚拟机安装MySQL5.2.…...

用Nest 实现大文件分片上传,加速工作效率神器
文件上传是常见需求,只要指定 content-type 为 multipart/form-data,内容就会以这种格式被传递到服务端: 服务端再按照 multipart/form-data 的格式提取数据,就能拿到其中的文件。 但当文件很大的时候,事情就变得不一样…...
将ncnn及opencv的mat存储成bin文件的方法
利用fstream,将ncnn及opencv的mat存储成bin文件。 ncnn::Mat to bin std::ios::binary标志指示文件以二进制模式进行读写, std::ofstream file("output_x86.bin", std::ios::binary); 将input_mat中的宽、高和通道数分别赋值给width、heig…...

dpdk原理概述及核心源码剖析
dpdk原理 1、操作系统、计算机网络诞生已经几十年了,部分功能不再能满足现在的业务需求。如果对操作系统做更改,成本非常高,所以部分问题是在应用层想办法解决的,比如前面介绍的协程、quic等,都是在应用层重新开发的框…...

VTK+QT配置(VS)
先根据vtk配置这个博客配置基本环境 然后把这个dll文件从VTK的designer目录复制到qt的对应目录里 记得这里是debug版本,你也可以配置release都一样的步骤,然后建立一个qt项目,接着配置包含目录,库目录,链接输入&…...

5G边缘计算:解密边缘计算的魔力
引言 你是否曾想过,网络可以更贴心、更智能地为我们提供服务?5G边缘计算就像是网络的小助手,时刻待命在你身边,让数字生活变得更加便捷。 什么是5G边缘计算? 想象一下,边缘计算就像是在离你最近的一层“云…...

Sentinel 流量治理组件教程
前言 官网首页:home | Sentinel (sentinelguard.io) 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形…...
C语言第五十九弹---介绍说明内存函数memcmp
使用C语言介绍说明内存函数memcmp memcmp是C语言标准库中的一个函数,用于比较两个内存区域的内容是否相同。 源代码: int memcmp(const void* ptr1, const void* ptr2, size_t num);ptr1和ptr2分别是要比较的两个内存区域的指针,num是要比较…...

jar混淆,防止反编译,Allatori工具混淆jar包
文章目录 Allatori工具简介下载解压配置config.xml注意事项 Allatori工具简介 官网地址:https://allatori.com/ Allatori不仅混淆了代码,还最大限度地减小了应用程序的大小,提高了速度,同时除了你和你的团队之外,任何人…...
linux中批量将HEIC转jpg
苹果目前已大量使用HEIC格式的照片,虽然上传到Windows系统的时候是会自动转为jpg的,但也经常会在很多场景中保留了HEIC格式,前两天就收到了一大堆HEIC文件,window10里都打不开,照片的插件是需要付费下载的,…...

听GPT 讲Rust源代码--src/tools(25)
File: rust/src/tools/clippy/clippy_lints/src/methods/suspicious_command_arg_space.rs 在Rust源代码中,suspicious_command_arg_space.rs文件位于clippy_lints工具包的methods目录下,用于实现Clippy lint SUSPICIOUS_COMMAND_ARG_SPACE。 Clippy是Ru…...
一款C++编写的数据可视化库Matplot++
它是基于著名的 Matplotlib 库(Python 中广泛使用的绘图库)构建的,旨在提供类似于 Matplotlib 的功能,但专门为 C 设计。Matplot 支持多种图表类型,包括线图、散点图、条形图、直方图、误差线图等,使数据可…...
paddle 56 将图像分类模型嵌入到目标检测中并实现端到端的部署(用图像分类模型进行目标检测切片分类)
目标检测在功能上一直是涵盖了图像分类的,其包含目标切片检测,目标切片分类。由于某些原因,需要将目标检测的功能退化为检测,忽略其切片分类,使用外部的分类模型。然而这样操作会使得其与原始的部署代码不兼容,为此博主实现将图像分类模型嵌入到目标检测中,并实现端到端…...

SQL手工注入漏洞测试(MySQL数据库)
一、实验平台 https://www.mozhe.cn/bug/detail/elRHc1BCd2VIckQxbjduMG9BVCtkZz09bW96aGUmozhe 二、实验目标 获取到网站的KEY,并提交完成靶场。 三、实验步骤 ①、启动靶机,进行访问查找可能存在注入的页面 ②、通过测试判断注入点的位置(id) (1)…...
JAVA WEB用POI导出EXECL多个Sheet
前端方法:调用exportInfoPid这个方法并传入要查询的id即可,也可以用其他参数看个人需求 function exportInfoPid(id){window.location.href 服务地址"/exportMdsRoutePid/"id; } 后端控制层代码 Controller Scope("prototype") R…...
@RequestBody详解:用于获取请求体中的Json格式参数
获取请求体中的Json格式参数 (RequestBody) 当前端将一些比较复杂的参数转换成Json字符串通过请求体传递过来给后端,这种时候就可以使用RequestBody注解获取请求体中的数据。 而json字符串是包含在请求体中的,使用请求体传参通常…...

AI日报:2024年人工智能对各行业初创企业的影响
欢迎订阅专栏 《AI日报》 获取人工智能邻域最新资讯 文章目录 2024年人工智能对初创企业的影响具体行业医疗金融服务运输与物流等 新趋势 2024年人工智能对初创企业的影响 2023年见证了人工智能在各个行业的快速采用和创新。随着我们步入2024年,人工智能初创公司正…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...

高抗扰度汽车光耦合器的特性
晶台光电推出的125℃光耦合器系列产品(包括KL357NU、KL3H7U和KL817U),专为高温环境下的汽车应用设计,具备以下核心优势和技术特点: 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计,确保在…...
HTML中各种标签的作用
一、HTML文件主要标签结构及说明 1. <!DOCTYPE html> 作用:声明文档类型,告知浏览器这是 HTML5 文档。 必须:是。 2. <html lang“zh”>. </html> 作用:包裹整个网页内容,lang"z…...
[QMT量化交易小白入门]-六十二、ETF轮动中简单的评分算法如何获取历史年化收益32.7%
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。 QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。 文章目录 相关阅读1. 策略概述2. 趋势评分模块3 代码解析4 木头…...
npm install 相关命令
npm install 相关命令 基本安装命令 # 安装 package.json 中列出的所有依赖 npm install npm i # 简写形式# 安装特定包 npm install <package-name># 安装特定版本 npm install <package-name><version>依赖类型选项 # 安装为生产依赖(默认&…...