当前位置: 首页 > news >正文

【【迭代16次的CORDIC算法-verilog实现】】

迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现

CORDIC.v

module cordic32#(parameter         DATA_WIDTH    =      8'd32  ,     // we set data widthparameter         PIPELINE      =      5'd16        // Optimize waveform)(input                              clk       ,input                              rst_n     ,input    signed    [DATA_WIDTH - 1 : 0]   phase     ,input                              ena       ,output  reg signed [DATA_WIDTH - 1  : 0]   sin_out   ,output  reg signed [DATA_WIDTH - 1  : 0]   cos_out);// -----------------------------------------------  \\//    next is define and parameter                  \\// ------------------------------------------------- \\
reg    signed     [DATA_WIDTH - 1 : 0]     phase_reg    ;reg    signed     [DATA_WIDTH - 1 : 0]     phase_reg1    ;reg    signed     [DATA_WIDTH - 1 : 0]     X0           ;reg    signed     [DATA_WIDTH - 1 : 0]     Y0           ;reg    signed     [DATA_WIDTH - 1 : 0]     Z0           ;wire   signed     [DATA_WIDTH - 1 : 0]     X1 , Y1 , Z1 ;wire   signed     [DATA_WIDTH - 1 : 0]     X2 , Y2 , Z2 ;wire   signed     [DATA_WIDTH - 1 : 0]     X3 , Y3 , Z3 ;wire   signed     [DATA_WIDTH - 1 : 0]     X4 , Y4 , Z4 ;wire   signed     [DATA_WIDTH - 1 : 0]     X5 , Y5 , Z5 ;wire   signed     [DATA_WIDTH - 1 : 0]     X6 , Y6 , Z6 ;wire   signed     [DATA_WIDTH - 1 : 0]     X7 , Y7 , Z7 ;wire   signed     [DATA_WIDTH - 1 : 0]     X8 , Y8 , Z8 ;wire   signed     [DATA_WIDTH - 1 : 0]     X9 , Y9 , Z9 ;wire   signed     [DATA_WIDTH - 1 : 0]     X10 , Y10 , Z10 ;wire   signed     [DATA_WIDTH - 1 : 0]     X11 , Y11 , Z11 ;wire   signed     [DATA_WIDTH - 1 : 0]     X12 , Y12 , Z12 ;wire   signed     [DATA_WIDTH - 1 : 0]     X13 , Y13 , Z13 ;wire   signed     [DATA_WIDTH - 1 : 0]     X14 , Y14 , Z14 ;wire   signed     [DATA_WIDTH - 1 : 0]     X15 , Y15 , Z15 ;wire   signed     [DATA_WIDTH - 1 : 0]     X16 , Y16 , Z16 ;reg    signed     [DATA_WIDTH - 1 : 0]     XN15 , YN15     ;reg [1:0] quadrant[PIPELINE : 0] ;integer i ;// We will convert all new angles to the first quadrant//always@(posedge clk or negedge rst_n)beginif( rst_n == 0 )beginphase_reg <= 0 ;phase_reg1 <= 0 ;endelse if( ena == 1)beginphase_reg1 <= phase ;case(phase[DATA_WIDTH - 1 : DATA_WIDTH - 2])2'b00 :phase_reg <= phase                 ;2'b01 :phase_reg <= phase - 32'h40000000  ;   // -902'b10 :phase_reg <= phase - 32'h80000000  ;   // -1802'b11 :phase_reg <= phase - 32'hC0000000  ;   // -270default :phase_reg <= 32'h00   ; endcaseendend// We begin the initialization operation// we set 0.607253*???2^31-1???,32'h4DBA775Falways@(posedge clk or negedge rst_n)beginif(rst_n == 0 )beginX0 <= 0 ;Y0 <= 0 ;Z0 <= 0 ;endelse if(ena == 1)beginX0 <= 32'h4DBA775F ;Y0 <= 0            ;Z0 <= phase_reg    ;endend// for instantiation - 16
INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd0 ),.ANGLE      ( 32'h20000000 )
)u_INTERATION0(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X0         ),.Y0         ( Y0         ),.Z0         ( Z0         ),.X1         ( X1         ),.Y1         ( Y1         ),.Z1         ( Z1         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd1 ),.ANGLE      ( 32'h12E4051D )
)u_INTERATION1(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X1         ),.Y0         ( Y1         ),.Z0         ( Z1         ),.X1         ( X2         ),.Y1         ( Y2         ),.Z1         ( Z2         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd2 ),.ANGLE      ( 32'h09FB385B )
)u_INTERATION2(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X2         ),.Y0         ( Y2         ),.Z0         ( Z2         ),.X1         ( X3         ),.Y1         ( Y3         ),.Z1         ( Z3         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd3 ),.ANGLE      ( 32'h051111D4 )
)u_INTERATION3(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X3         ),.Y0         ( Y3         ),.Z0         ( Z3         ),.X1         ( X4         ),.Y1         ( Y4         ),.Z1         ( Z4         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd4 ),.ANGLE      ( 32'h028B0D43 )
)u_INTERATION4(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X4         ),.Y0         ( Y4         ),.Z0         ( Z4         ),.X1         ( X5         ),.Y1         ( Y5         ),.Z1         ( Z5         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd5 ),.ANGLE      ( 32'h0145D7E1 )
)u_INTERATION5(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X5         ),.Y0         ( Y5         ),.Z0         ( Z5         ),.X1         ( X6         ),.Y1         ( Y6         ),.Z1         ( Z6         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd6 ),.ANGLE      ( 32'h00A2F61E )
)u_INTERATION6(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X6         ),.Y0         ( Y6         ),.Z0         ( Z6         ),.X1         ( X7         ),.Y1         ( Y7         ),.Z1         ( Z7         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd7 ),.ANGLE      ( 32'h00517C55 )
)u_INTERATION7(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X7         ),.Y0         ( Y7         ),.Z0         ( Z7         ),.X1         ( X8         ),.Y1         ( Y8         ),.Z1         ( Z8         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd8 ),.ANGLE      ( 32'h0028BE53 )
)u_INTERATION8(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X8         ),.Y0         ( Y8         ),.Z0         ( Z8         ),.X1         ( X9         ),.Y1         ( Y9         ),.Z1         ( Z9         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd9 ),.ANGLE      ( 32'h00145F2F )
)u_INTERATION9(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X9         ),.Y0         ( Y9         ),.Z0         ( Z9         ),.X1         ( X10         ),.Y1         ( Y10         ),.Z1         ( Z10         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd10 ),.ANGLE      ( 32'h000A2F98 )
)u_INTERATION10(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X10         ),.Y0         ( Y10         ),.Z0         ( Z10         ),.X1         ( X11         ),.Y1         ( Y11         ),.Z1         ( Z11         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd11 ),.ANGLE      ( 32'h000517CC )
)u_INTERATION11(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X11         ),.Y0         ( Y11         ),.Z0         ( Z11         ),.X1         ( X12         ),.Y1         ( Y12         ),.Z1         ( Z12         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd12 ),.ANGLE      ( 32'h00028BE6 )
)u_INTERATION12(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X12         ),.Y0         ( Y12         ),.Z0         ( Z12         ),.X1         ( X13         ),.Y1         ( Y13         ),.Z1         ( Z13         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd13 ),.ANGLE      ( 32'h000145F3 )
)u_INTERATION13(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X13         ),.Y0         ( Y13         ),.Z0         ( Z13         ),.X1         ( X14         ),.Y1         ( Y14         ),.Z1         ( Z14         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd14 ),.ANGLE      ( 32'h0000A2FA )
)u_INTERATION14(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X14         ),.Y0         ( Y14         ),.Z0         ( Z14         ),.X1         ( X15         ),.Y1         ( Y15         ),.Z1         ( Z15         )
);INTERATION#(.DATA_WIDTH ( 8'd32 ),.shift      ( 5'd15 ),.ANGLE      ( 32'h0000517D )
)u_INTERATION15(.clk        ( clk        ),.rst_n      ( rst_n      ),.ena        ( ena        ),.X0         ( X15         ),.Y0         ( Y15         ),.Z0         ( Z15         ),.X1         ( X16         ),.Y1         ( Y16         ),.Z1         ( Z16         )
);// iteration over always@(posedge clk or negedge rst_n)
beginif(rst_n == 0)for(i = 0 ; i < PIPELINE ; i=i+1)quadrant[i] <= 0 ;elseif(ena == 1)beginfor(i = 0 ; i < PIPELINE ; i=i+1)quadrant[i+1] <= quadrant[i] ;quadrant[0] <= phase_reg1[DATA_WIDTH - 1 : DATA_WIDTH - 2] ;end
end//------------------------------------------  \\//------------------------------------------  \\
//  Prevent overflow caused by small decimals and negative complement
//always @(posedge clk or negedge rst_n)if(rst_n == 0)XN15<=0;else if(X15[31:30] == 2'b11)//小于0XN15<=~X15 + 1'b1;else if(X15[31:30] == 2'b10)//大于1XN15<=32'h80000000 - X15 + 32'h80000000;else XN15 <= X15;always @(posedge clk or negedge rst_n )if(rst_n == 0)YN15 <=0;else if(Y15[31:30] == 2'b11)//小于0 YN15 <=~Y15 + 1'b1;else if(Y15[31:30] == 2'b10)//大于1YN15 <=32'h80000000 -Y15 + 32'h80000000;else YN15 <=Y15;// 
//   The results of different phases are also different//   phase[DATA_WIDTH -1 : DATA_WIDTH -2]//  00 first  quadrant//  01 second quadrant//  10 third  quadrant//  11 Fourth Quadrantalways@(posedge clk or negedge rst_n)
beginif(rst_n == 0)begincos_out <= 0 ;sin_out <= 0 ;endelse if( ena == 1)begincase(quadrant[16]) 2'b00 :begincos_out <= XN15 ;sin_out <= YN15 ;end2'b01 :begincos_out <= ~YN15 + 1'b1;sin_out <= XN15        ;end2'b10 :begincos_out <= ~XN15 + 1'b1  ;sin_out <= ~YN15 + 1'b1 ;end2'b11 :begincos_out <= YN15        ;sin_out <= ~XN15 + 1'b1 ;endendcaseend
end
endmodule

ITERATION.v

module INTERATION #(parameter   DATA_WIDTH       =    8'd32       ,parameter   shift            =    5'd0        ,parameter   ANGLE            =    32'h20000000)(input                                  clk     ,input                                  rst_n   ,input                                  ena     ,input       signed  [DATA_WIDTH - 1 : 0]      X0      ,input       signed  [DATA_WIDTH - 1 : 0]      Y0      ,input       signed  [DATA_WIDTH - 1 : 0]      Z0      ,output  reg signed  [DATA_WIDTH - 1 : 0]      X1      ,output  reg signed  [DATA_WIDTH - 1 : 0]      Y1      ,output  reg signed  [DATA_WIDTH - 1 : 0]      Z1);always@(posedge clk or negedge rst_n)beginif( rst_n == 0)beginX1 <= 0 ;Y1 <= 0 ;Z1 <= 0 ;endelse if( ena == 1)beginif(Z0[DATA_WIDTH - 1] == 0 )begin// X1 <= X0 - {{shift{ Y0[DATA_WIDTH - 1] }} ,Y0[DATA_WIDTH - 1 : shift] } ;// Y1 <= Y0 + {{shift{ X0[DATA_WIDTH - 1] }} ,X0[DATA_WIDTH - 1 : shift] } ;X1 <= X0 - (Y0>>>shift);Y1 <= Y0 + (X0>>>shift);Z1 <= Z0 - ANGLE                                                    ;endelse if(Z0[DATA_WIDTH - 1] == 1 )begin//X1 <= X0 + {{shift{ Y0[DATA_WIDTH - 1 ] }} ,Y0[DATA_WIDTH - 1 : shift] } ;// Y1 <= Y0 - {{shift{ X0[DATA_WIDTH - 1 ] }} ,X0[DATA_WIDTH - 1 : shift] } ;X1 <= X0 + (Y0>>>shift) ;Y1 <= Y0 - {X0>>>shift} ;Z1 <= Z0 + ANGLE                                                    ;endendendendmodule

CORDIC_tb.v

module cordic_tb #(parameter         DATA_WIDTH    =      8'd32  ,     // we set data widthparameter         PIPELINE      =      5'd16        // Optimize waveform    
);
reg                                 clk       ;
reg                                 rst_n     ;
reg          [DATA_WIDTH - 1 : 0]   phase     ;
reg                                 ena       ;
wire         [DATA_WIDTH - 1  : 0]   sin_out   ;
wire         [DATA_WIDTH - 1 : 0]   cos_out   ;integer i;
cordic32#(.DATA_WIDTH ( DATA_WIDTH ),.PIPELINE   ( PIPELINE )
)u_cordic32(.clk        ( clk        ),.rst_n      ( rst_n      ),.phase      ( phase      ),.ena        ( ena        ),.sin_out    ( sin_out    ),.cos_out    ( cos_out    )
);initial
begin#0 clk = 1'b0;ena   = 1'b1 ;#10 rst_n = 1'b0;#10 rst_n = 1'b1;#20000000 $stop;
end initial
beginrepeat(10)begin#0 phase = 32'd0;for(i=0;i<131072;i=i+1)begin#10;phase <= phase + 32'h8000;endend
end
always #10
beginclk = ~clk;
endendmodule 

README.md

在完成CORDIC的7次迭代之后 我在思考一个问题 8位进行了7次迭代 最后迭代至0号称没有误差了
我们是否可以通过 扩展至32位 进行多次迭代  将误差不断的缩小 本次数据参考至 网上的其他教程 我并没有自己去计算 我把结构优化一下 修改成更加便于理解使用的形式还有一件事 是 进制 与 Π 转化的问题 
对于 8位 其实我们 一开始将Π 设定为 1000_0000
那么对于 Π/4 是否就是1000_0000 的 四分之一 对于二进制 其实就是整体的数字进行移位 
我们将1000_0000 移动至 0010_0000 于此 而对于 32位我们32'h8000000 就是一个Π
而 32’h2000_0000 就是四分之Π 还有一件事 说明 我在写例化的时候 将数据完全完整的例化了下来 写的很长 这样并不是很好 
后面学习中 我看别人是 这么处理的 
genvar die;
generatefor (die = 0; die <Pipeline; die=die+1)begin: dieLoopalways @(posedge CLK_SYS or negedge RST_N)if (!RST_N) beginxn[die+1] <= 32'h0;yn[die+1] <= 32'h0;zn[die+1] <= 32'h0;endelse begin             if(zn[die][31]==1'b0)//角度符号判断beginxn[die+1] <= xn[die] - (yn[die]>>>die);yn[die+1] <= yn[die] + (xn[die]>>>die);zn[die+1] <= zn[die] - rot[die];  endelse beginxn[die+1] <= xn[die] + (yn[die]>>>die);yn[die+1] <= yn[die] - (xn[die]>>>die);zn[die+1] <= zn[die] + rot[die];  endendend
endgenerate# 还有一件事 对于溢出的考量 
我们所作溢出的考量 其实我们设定了32'h8000_0000 这既是Π的值 也是 1的设定 
但是在实际的运用和计算中 我们其实永远也达不到1 嘿嘿 
因为我们把最高位设计成了 符号位 
那么最大 也就是1 我们约等于 32'h7fff_ffff
这里需要注意的是[31:28] 是 7 也就是0111 非常重要的一个结论 我们最高位0代表了符号位
那么对于设计到第一象限的[31:30] 的值可以取 00 01 但是 10 11我们要对其进行合适的转化
所以便有了我们  对溢出的操作 always @(posedge clk or negedge rst_n)if(rst_n == 0)XN15<=0;else if(X15[31:30] == 2'b11)//小于0XN15<=~X15 + 1'b1;else if(X15[31:30] == 2'b10)//大于1XN15<=32'h80000000 - X15 + 32'h80000000;else XN15 <= X15;always @(posedge clk or negedge rst_n )if(rst_n == 0)YN15 <=0;else if(Y15[31:30] == 2'b11)//小于0 YN15 <=~Y15 + 1'b1;else if(Y15[31:30] == 2'b10)//大于1YN15 <=32'h80000000 -Y15 + 32'h80000000;else YN15 <=Y15;注意在设计的时候 定义成reg signed 的形式 将其设计为有符号位 

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

相关文章:

【【迭代16次的CORDIC算法-verilog实现】】

迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现 CORDIC.v module cordic32#(parameter DATA_WIDTH 8d32 , // we set data widthparameter PIPELINE 5d16 // Optimize waveform)(input …...

IntelliJ IDEA 2023.3 安装教程

引言 IntelliJ IDEA&#xff0c;通常简称为 IDEA&#xff0c;是由 JetBrains 开发的一款强大的集成开发环境&#xff0c;专为提升开发者的生产力而设计。它支持多种编程语言&#xff0c;包括 Java、Kotlin、Scala 和其他 JVM 语言&#xff0c;同时也为前端开发和移动应用开发提…...

Go 错误处理

Go 错误处理 Go 语言通过内置的错误接口提供了非常简单的错误处理机制。 error类型是一个接口类型&#xff0c;这是它的定义&#xff1a; type error interface {Error() string }我们可以在编码中通过实现 error 接口类型来生成错误信息。 函数通常在最后的返回值中返回错误…...

HarmonyOS构建第一个ArkTS应用(Stage模型)

构建第一个ArkTS应用&#xff08;Stage模型&#xff09; 创建ArkTS工程 若首次打开DevEco Studio&#xff0c;请点击Create Project创建工程。如果已经打开了一个工程&#xff0c;请在菜单栏选择File > New > Create Project来创建一个新工程。 选择Application应用开发…...

故障排查利器-错误日志详解

目录 什么是错误日志 错误日志的作用 错误日志的内容 错误日志的格式 错误日志的生成方式 错误日志的解析和处理 错误日志的最佳实践 小结 错误日志是软件开发和运维中非常重要的一部分&#xff0c;记录了应用程序运行过程中发生的错误和异常信息&#xff0c;如错误类型…...

微信小程序(uniapp)api讲解

Uniapp是一个基于Vue.js的跨平台开发框架&#xff0c;可以同时开发微信小程序、H5、App等多个平台的应用。下面是Uniapp常用的API讲解&#xff1a; Vue.js的API Uniapp采用了Vue.js框架&#xff0c;因此可以直接使用Vue.js的API。例如&#xff1a;v-show、v-if、v-for、comput…...

overtureDNS使用介绍

Overture是一个定制的DNS中继服务器。 在此下在二进制版本 https://github.com/shawn1m/overture/releases默认配置文件./config.yml bindAddress: :53 debugHTTPAddress: 127.0.0.1:5555 dohEnabled: false primaryDNS:- name: DNSPodaddress: 119.29.29.29:53protocol: udp…...

平衡二叉树的构建(递归

目录 1.概念&#xff1a;2.特点&#xff1a;3.构建方法&#xff1a;4.代码&#xff1a;小结&#xff1a; 1.概念&#xff1a; 平衡二叉树&#xff08;Balanced Binary Tree&#xff09;&#xff0c;也称为AVL树&#xff0c;是一种二叉树&#xff0c;它满足每个节点的左子树和右…...

flutter开发实战-设置bottomNavigationBar中间按钮悬浮效果

flutter开发实战-设置bottomNavigationBar中间按钮悬浮的效果 在使用tabbar时候&#xff0c;可以使用bottomNavigationBar来设置中间凸起的按钮&#xff0c;如下 一、效果图 中间按钮凸起的效果图如下 二、实现代码 我们使用BottomAppBar 一个容器&#xff0c;通常与[Sscaf…...

不同参数规模大语言模型在不同微调方法下所需要的显存总结

原文来自DataLearnerAI官方网站&#xff1a; 不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051703254378255 大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任…...

Crow:Middlewares 庖丁解牛6 middleware_call_helper

Crow:http请求到Rule绑定的handler_的调用链-CSDN博客 介绍了handler_的调用顺序,其中的一个调用过程是Connection::->handle void handle() {...ctx_ = detail::context<Middlewares...>();req_.middleware_context = static_cast<void*>(&ctx_);req_.m…...

MyBatis:Generator

MyBatis Generator附批量操作分页查询存储过程 Generator 介绍网址&#xff1a;Introduction to MyBatis Generator Generator &#xff0c;一个用于 MyBatis 的代码生成工具&#xff0c;可以根据数据库表结构自动生成对应的实体类、DAO 接口和 SQL 映射文件&#xff0c;提高…...

rabbitmq的事务实现、消费者的事务实现

RabbitMQ提供了事务机制&#xff0c;可以确保消息在发送和确认过程中的一致性。使用事务机制可以将一系列的消息操作&#xff08;发送、确认、回滚&#xff09;作为一个原子操作&#xff0c;要么全部执行成功&#xff0c;要么全部回滚。 下面是使用RabbitMQ事务的一般步骤&…...

龙芯杯个人赛串口——做一个 UART串口——RS-232

文章目录 Async transmitterAsync receiver1. RS-232 串行接口的工作原理DB-9 connectorAsynchronous communicationHow fast can we send data? 2.波特率时钟生成器Parameterized FPGA baud generator 3.RS-232 transmitter数据序列化完整代码&#xff1a; 4.RS-232 receiver…...

验证码服务使用指南

验证码服务使用指南 1 部署验证码服务 1.1 基础环境 Java 1.8 Maven3.3.9 1.2 安装Redis 参考“Redis安装指南” 1.3 部署验证码服务 1.3.1 下载源码 使用git从远程下载验证码服务代码(开源)。 1.3.2 使用idea打开项目 使用idea打开上一步下载的sailing目录&#xf…...

js中Math.min(...arr)和Math.max(...arr)的注意点

当arr变量为空数组时&#xff0c;这两个函数和不传参数时的结果是一样的 Math.max() // -Infinity Math.max(...[]) // -InfinityMath.min() // Infinity Math.min(...[]) // Infinity...

【zookeeper特点和集群架构】

文章目录 1. Zookeeper介绍2、ZooKeeper数据结构3、Zookeeper集群架构 1. Zookeeper介绍 ZooKeeper 是一个开源的分布式协调框架&#xff0c;是Apache Hadoop 的一个子项目&#xff0c;主要用来解决分 布式集群中应用系统的一致性问题。Zookeeper 的设计目标是将那些复杂且容易…...

MySQL集群架构搭建以及多数据源管理实战

MySQL集群架构搭建以及多数据源管理实战 ​ 数据库的分库分表操作&#xff0c;是互联网大型应用所需要面对的最核心的问题。因为数据往往是一个应用最核心的价值所在。但是&#xff0c;在最开始的时候&#xff0c;需要强调下&#xff0c;在实际应用中&#xff0c;对于数据库&a…...

C# WPF上位机开发(从demo编写到项目开发)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 C# WPF编程&#xff0c;特别是控件部分&#xff0c;其实学起来特别快。只是后面多了多线程、锁、数据库、网络这部分稍微复杂一点&#xff0c;不过…...

微信小程序引入 vant组件(详细步骤)

vant官方地址 https://vant-contrib.gitee.io/vant-weapp/#/quickstart 步骤一、 通过 npm 安装 # 通过 npm 安装 npm i vant/weapp -S --production# 通过 yarn 安装 yarn add vant/weapp --production# 安装 0.x 版本 npm i vant-weapp -S --production步骤二 修改 app.js…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...