时间序列预测模型介绍及使用经验总结
1. 时序预测背景
时序数据,就是序列随时间变化的数据。时间序列分析,一般有时域和频域两种分析方法。时序预测的本质是在时域和频域层面探索时间序列变化的内在规律。
下图描述的是时域(temporal domain),横坐标是时间,纵坐标是某个测量信号的数值。时域能够最直观地反映序列随时间的变化。
时域分析一般包括周期、季节和趋势这三类规律:
-
周期性:重复的上升、下降过程,从哪来回哪去;
-
季节性:固定频率的上升、下降,多为先验因素;
-
趋势性:长期保持增长或者下降。
另一种时序的分析方法是频域分析,下图展示的就是某个时间序列的频域(frequency domain),反映的是序列频率的变化,横坐标是信号的频率,纵坐标是信号的振幅或能量等物理量。频域分析有个重要的概念叫做谱密度,其核心思想是:信号是由少数主频叠加而成的。因此往往在时序层面难以分析时间序列变化的内在规律,会将时序通过FFT等手段转变为频域以及采用小波变换等方法进行辅助分析。
上述这一思想在其他领域也会频繁被使用,例如将时间序列进行主成分分解等。
时间序列预测模型,常用的机器学习模型主要包括以下3类:ARIMA,Prophet,LGB。这3类模型的优缺点如下:
(1)ARIMA
①优点
-
简单易行,可解释性强;
-
数据量要求低;
-
计算速度较快,可以对每个站在线拟合推理;
②缺点
-
仅支持单变量;
-
无法特征工程;
-
准确率低;
③适用场景:基于统计学方法,项目初期冷启动
(2)Prophet
①优点
-
简单易行,可解释性强;
-
数据量要求低;
-
加入先验知识(节假日);
-
计算速度更快,可以对每个站在线拟合推理;
②缺点
-
仅支持单变量;
-
无法特征工程;
-
准确率较低;
③适用场景:项目初期迭代
(3)LGB
①优点
-
准确率较高;
-
简单易行,可解释性强;
-
支持批量预测,计算速度更快;
②缺点
-
迭代模型等于迭代特征,但是迭代特征存在瓶颈;
-
对类别特征利用不充分;
③适用场景:项目中期迭代
3.深度学习模型
前文提到,机器学习的可操作性以及模型效果都是有限的,会遇到瓶颈,因此引入深度学习模型:
① 深度学习模型架构
时序预测任务所涉及到的CNNs、RNNs和Transformers等模型都属于生成模型,具有统一的架构(unified architecture),这样的架构有两个重点部分,一个是Embedding引擎部分,另一个是编码器-解码器部分,如下图所示:
-
TCN模型的编码器和解码器主要是1D卷积网络;
-
CRNN模型的编码器和解码器主要是1D卷积网络和RNN网络;
-
Informer模型的编码器和解码器主要是Transformer网络;
-
DCN模型的编码器和解码器主要是2D卷积网络;
2. 时序预测痛点:
一个是节假日时间不固定问题,另一个是时间先验问题。
-
Temporal Embedding。Temporal Embedding主要用来解决两个问题,一个是节假日时间不固定问题,另一个是时间先验问题。
1. 对于第一个节假日不固定问题,我们的节假日包括阳历节日和农历节日;根据序列的时间周期可以拆分成小时、天、周、月、年等常规周期;
对于节假日时间的对齐方式,包括硬对齐和软对齐两种方式。
- 硬对齐主要指序列按照周、月、年等方式进行序列对齐,
- 软对齐主要是指将序列进行傅里叶变换(时序->频域),找到序列的 主频,借助序列的频域信息进行对齐。
2. 对于第二个时间先验问题,如下图所示,预测的时间数据已知,但是 其它相关输入变量 未知,这就造成了输入数据的维度不一致;
对于上述问题,通过填充 未知的其他变量 保证 输入数据的 维度一致,并根据位置的标记 区分 已知变量和未知变量,最终可以得到输出的预测变量。
2. 卷积模块设计经验
DCN部分中卷积层的设计,首先面临如下的思考:假设输入序列长度等于L,第i个卷积层的卷积核大小等于2i+1,步长等于1,需要多少卷积层?
这里涉及到两个概念:
-
因果卷积
-
时间序列本身存在因果关系,即在某一时间点t,只能获取历史信息,而无法获取未来信息;
-
使用下图所示的单边卷积,用来保证序列的时间因果关系。
-
感受野
-
感受野主要是指将一个特征点映射回到原始输入,所覆盖的范围;
-
需要保证卷积神经网络可以覆盖到 输入时间序列的长度范围;
-
感受野可以通过下图的表格计算,得到的n就是需要设置的卷积层数
-
第i个卷积层的卷积核大学: 2i+1
-
感受野: i^2+i+1
-
确定了卷积层的层数,将卷积层通过残差层子模块,像搭积木一样连接成整体的网络模块。
4.模型融合
模型融合方面,有三个问题值得思考:
-
加法还是减法?
-
减法 主要包括残差、GBDT、Shortcut等;
-
加法 主要包括stacking等方法;
-
-
分类还是回归?
-
传统的预测一般是回归问题;
-
类问题往往会涉及概率问题,通过投票选择可以获得一定的信息;
-
-
向上、向下还是躺平?
-
使用基模型进行预测,可通过强化学习对预测效果进行反馈与激励,引导模型自主学习。
-
相关文章:

时间序列预测模型介绍及使用经验总结
1. 时序预测背景 时序数据,就是序列随时间变化的数据。时间序列分析,一般有时域和频域两种分析方法。时序预测的本质是在时域和频域层面探索时间序列变化的内在规律。 下图描述的是时域(temporal domain),横坐标是时…...

Docker知识总结
文章目录 Docker1 Docker简介1.1 什么是虚拟化1.2 什么是Docker1.3 容器与虚拟机比较1.4 Docker 组件1.4.1 Docker服务器与客户端1.4.2 Docker镜像与容器1.4.3 Registry(注册中心) 2 Docker安装与启动2.1 安装Docker2.2 设置ustc的镜像2.3 Docker的启动与…...
算法训练营Day25
#Java #回溯 开源学习资料 Feeling and experiences: 复原IP地址:力扣题目链接 有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 . 分隔。 例如࿱…...

docker笔记2-docker 容器
docker 容器的运行 docker run 镜像名:版本标签: 创建 启动容器 docker run 镜像名 ,如果镜像不存在,则会在线下载镜像。 注意事项: 容器内的进程必须处于前台运行状态,不能后台(守护进程运行…...

redis 从0到1完整学习 (七):ZipList 数据结构
文章目录 1. 引言2. redis 源码下载3. zipList 数据结构3.1 整体3.2 entry 数据结构分析3.3 连锁更新 4. 参考 1. 引言 前情提要: 《redis 从0到1完整学习 (一):安装&初识 redis》 《redis 从0到1完整学习 (二&am…...

2015年第四届数学建模国际赛小美赛C题科学能解决恐怖主义吗解题全过程文档及程序
2015年第四届数学建模国际赛小美赛 C题 科学能解决恐怖主义吗 原题再现: 为什么人们转向恐怖主义,特别是自杀性恐怖主义?主要原因是什么?这通常是大问题和小问题的结合,或者是一些人所说的“推拉”因素。更大的问题包…...

基于Java开发的微信约拍小程序
一、系统架构 前端:vue | element-ui 后端:springboot | mybatis 环境:jdk8 | mysql8 | maven | mysql 二、代码及数据库 三、功能说明 01. 首页 02. 授权登录 03. 我的 04. 我的-编辑个人资料 05. 我的-我的联系方式 06. …...

蓝桥杯的学习规划
c语言基础: Python语言基础 学习路径:画框的要着重学习...

EMC噪声的本质
01 频谱的含义 频谱是将电磁波分解为正弦波分量,并按波长顺序排列的波谱,就是将具有复杂组成的东西分解(频谱分析仪)为单纯成分,并把这些成分按其特征量的大小依序排列(部分不计),…...
Redis遇到过的问题 (Could not get a resource from the pool )
生产上通过scan命令,查询一个大key耗时40s后,报 Could not get a resource from the pool,初步报错是连接池的连接数不够,从网上搜了一些解决方案。 排查过程: 一、首先需要先尝试连接redis,如果连接不上那…...
Spring Boot 3.2 新特性之 HTTP Interface
SpringBoot 3.2引入了新的 HTTP interface 用于http接口调用,采用了类似 openfeign 的风格。 具体的代码参照 示例项目 https://github.com/qihaiyan/springcamp/tree/master/spring-http-interface 一、概述 HTTP Interface 是一个类似于 openfeign 的同步接口调…...

Flask+Mysql项目docker-compose部署(Pythondocker-compose详细步骤)
一、前言 环境: Linux、docker、docker-compose、python(Flask)、Mysql 简介: 简单使用Flask框架写的查询Mysql数据接口,使用docker部署,shell脚本启动 优势: 采用docker方式部署更加便于维护,更加简单快…...
DDOS攻击简介——什么是DDOS
DDoS是什么? DDoS是分布式拒绝服务攻击(Distributed denial of service attack)的简称。 分布式拒绝服务器攻击(以下均称作DDoS)是一种可以使很多计算机(或服务器)在同一时间遭受攻击,使被攻击的目标无法正常使用的一种网络攻击方式。DDoS攻击在互联网上已经出现过…...

龙蜥开源操作系统能解决CentOS 停服造成的空缺吗?
龙蜥开源操作系统能解决CentOS 停服造成的空缺吗? 本文图片来源于龙蜥,仅做介绍时引用用途,版权归属龙蜥和相关设计人员。 一、《国产服务器操作系统发展报告(2023)》称操作系统已步入 2.0 时代,服务器操作…...

『Linux升级路』基础开发工具——gdb篇
🔥博客主页:小王又困了 📚系列专栏:Linux 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、背景知识介绍 二、gdb指令介绍 一、背景知识介绍 在软件开发中,…...

边缘计算云边端全览—边缘计算系统设计与实践【文末送书-10】
文章目录 一.边缘计算1.1边缘计算的典型应用 二.边缘计算 VS 云计算三.边缘计算系统设计与实践【文末送书-10】3.1 粉丝福利:文末推荐与福利免费包邮送书! 一.边缘计算 边缘计算是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心…...

使用PE信息查看工具和Dependency Walker工具排查因为库版本不对导致程序启动报错的问题
目录 1、问题说明 2、问题分析思路 3、问题分析过程 3.1、使用Dependency Walker打开软件主程序,查看库与库的依赖关系,找出出问题的库 3.2、使用PE工具查看dll库的时间戳 3.3、解决办法 4、最后 VC常用功能开发汇总(专栏文章列表&…...
Servlet技术之Cookie对象与HttpSession对象
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 Servlet技术之Cookie对象与HttpSession对象 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前…...
winlogbeat收集Windows事件日志传给ELK
服务器部署winlogbeat后,修改winlogbeat.yml: ###################### Winlogbeat Configuration Example ######################### This file is an example configuration file highlighting only the most common # options. The winlogbeat.reference.yml fi…...

Gin框架之使用 go-ini 加载.ini 配置文件
首先,联想一个问题,我们在部署服务时,通常为了方便,对于需要迭代更新的代码进行修改,但是比对shell,可以搞一个变量将需要修改的,以及修改起来变动处多的,写在变量内,到时候如果需要变更,可以直接变更变量即可; 那么,golang有没有什么方式可以将需要变的东西保存起…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...