当前位置: 首页 > news >正文

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.人工兔算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用人工兔算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.人工兔算法

人工兔算法原理请参考:https://blog.csdn.net/u011835903/article/details/128491707
人工兔算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

人工兔算法参数如下:

%% 设定人工兔优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明人工兔算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于人工兔算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.人工兔算法4.实验参数设定5.算法结果6.参考文…...

【ubuntu 22.04】安装vscode并配置正常访问应用商店

注意:要去vscode官网下载deb安装包,在软件商店下载的版本不支持输入中文 在ubuntu下用火狐浏览器无法访问vscode官网,此时可以手动进行DNS解析,打开DNS在线查询工具,解析以下主机地址(复制最后一个IP地址&a…...

K8s出现问题时,如何排查解决!

K8s问题的排查 1. POD启动异常、部分节点无法启动pod2. 审视集群状态3. 追踪事件日志4. 聚焦Pod状态5. 检查网络连通性6. 审视存储配置7. 研究容器日志8. K8S集群网络通信9. 问题:Service 是否通过 DNS 工作?10. 总结1、POD启动异常、部分节点无法启动p…...

2015年第四届数学建模国际赛小美赛B题南极洲的平均温度解题全过程文档及程序

2015年第四届数学建模国际赛小美赛 B题 南极洲的平均温度 原题再现: 地表平均温度是反映气候变化和全球变暖的重要指标。然而,在以前的估计中,在如何界定土地平均数方面存在一些方法上的差异。为简单起见,我们只考虑南极洲。请建…...

npm常见错误

三个方面 1. npm ERR! code ELIFECYCLE npm ERR! errno 1 npm ERR! code ELIFECYCLE npm ERR! errno 1 npm ERR! phantomjs-prebuilt2.1.15 install: node install.js npm ERR! Exit status 1 npm ERR! npm ERR! Failed at the phantomjs-prebuilt2.1.15 install script. np…...

JVM入门到入土-Java虚拟机寄存器指令集与栈指令集

JVM入门到入土-Java虚拟机寄存器指令集与栈指令集 HotSpot虚拟机中的任何操作都需要入栈和出栈的步骤。 由于跨平台性的设计,Java的指令都是根据栈来设计的。不同平台CPU架构不同,所以不能设计为基于寄存器的。优点是跨平台,指令集小&#x…...

MS2244模拟开关可Pin to Pin兼容NJM2244

MS2244 是一款集成的视频开关,实现三输入视频或音频信号的三选一。可Pin to Pin兼容NJM2244。 芯片集成了 75Ω驱动电路,可以直接驱动电视监控器。芯片工作电压 5V~12V,带宽 10MHz,抗串扰 70dB (4.43MHz)。另外芯片还集…...

PostgreSQL 可观测性最佳实践

简介 软件简述 PostgreSQL 是一种开源的关系型数据库管理系统 (RDBMS),它提供了许多可观测性选项,以确保数据库的稳定性和可靠性。 可观测性 可观测性(Observability)是指对数据库状态和操作进行监控和记录,以便在…...

51单片机相关寄存器

前言 单片机复习的时候对应寄存器的记忆感觉很混乱,这里进行一下整理,后面的单词是我用来辅助记忆的,可能并不是表示原本的含义。 P3口的第二功能 0RXD 串行数据输入口 1TXD串行数据输出口2INT0外部中断0输入3INT1外部中断1输入4T0定时器0外部计数输入…...

二叉树进阶题目(超详解)

文章目录 前言根据二叉树创建字符串题目分析写代码 二叉树的层序遍历题目分析 写代码二叉树的层序遍历II题目分析写代码 二叉树的最近公共祖先题目分析写代码时间复杂度 优化思路优化的代码 二叉搜索树与双向链表题目分析写代码 从前序与中序遍历序列构造二叉树题目分析写代码从…...

W6100-EVB-Pico评估版介绍

文章目录 1 简介2 硬件资源2.1 硬件规格2.2 引脚定义2.3 工作条件 3 参考资料3.1 Datasheet3.2 原理图3.3 尺寸图(尺寸:mm)3.4 参考例程 4 硬件协议栈优势 1 简介 W6100-EVB-Pico是一款基于树莓派RP2040和全硬件TCP/IP协议栈以太网芯片W6100的…...

嵌入式面试准备

题目都摘于网上 嵌入式系统中经常要用到无限循环,如何用C编写死循环 while(1){}或者for(;😉 内存分区 代码区,全局区(全局变量,静态变量,以及常量),栈区,堆区 const关键…...

在Linux Docker中部署RStudio Server,实现高效远程访问

🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 安装RStudio Server二. 本地访问三. Linux 安装cpolar四. 配置RStudio serv…...

EternalBlue【永恒之蓝】漏洞详解(复现、演示、远程、后门、入侵、防御)内容丰富-深入剖析漏洞原理-漏洞成因-以及报错解决方法-值得收藏!

漏洞背景: 1.何为永恒之蓝? 永恒之蓝(Eternal Blue)爆发于2017年4月14日晚,是一种利用Windows系统的SMB协议漏洞来获取系统的最高权限,以此来控制被入侵的计算机。甚至于2017年5月12日, 不法分子…...

长链接与在线文件

什么是在线文件 常见的聊天工具,比如。。。微信,你可以发送一个文件给对端,即使对端不在线,这个文件也可以暂存在服务器上面,直到接收端上线消费或者超时,这个叫离线文件。与之对应的,在线文件要…...

Python内置数据类型等入门语(句)法

内置数据类型 数字(Number)关键字: int 、float、complex字符串(String)关键字:单引号,双引号 三引号都可以表示,8 种内置类型都可转为字符串类型列表(List) 关键符号 […...

ElasticSearch之RestClient笔记

1. ElasticSearch 1.1 倒排索引 1.2 ElasticSearch和Mysql对比 1.3 RestClient操作 导入依赖 <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId><version>7.15.…...

饥荒Mod 开发(二二):显示物品信息

饥荒Mod 开发(二一)&#xff1a;超大便携背包&#xff0c;超大物品栏&#xff0c;永久保鲜 饥荒Mod 开发(二三)&#xff1a;显示物品栏详细信息 饥荒中的物品没有详细信息&#xff0c;基本上只有一个名字&#xff0c;所以很多物品的功能都不知道&#xff0c;比如浆果吃了也不知…...

Microsoft Edge使用方法和心得

Microsoft Edge使用方法和心得 大家好&#xff0c;我是豪哥&#xff0c;一名来自杭州的Java程序员&#xff0c;今天我想分享一下我对Microsoft Edge的使用方法和心得。作为一名热爱编程的程序员&#xff0c;我发现一个高效的浏览器对于我们的工作和学习至关重要。而Microsoft …...

Kafka操作指令笔记

查堆积用命令查&#xff1a; ./kafka-consumer-groups.sh --bootstrap-server {kafka集群地址} --describe --group {消费组名称}bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --all-groups #查看所有组别的积压情况可以通过grep、awk或其他文…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...