当前位置: 首页 > news >正文

讲座思考 | 周志华教授:新型机器学习神经元模型的探索

12月22日,有幸听了南京大学周志华教授题为“新型机器学习神经元模型的探索”的讲座。现场热闹非凡,大家像追星一样拿着“西瓜书”找周教授签名。周教授讲得依旧循循善诱,由浅入深,听得我很入迷,故作此记。

周教授首先就人工智能领域火热发展的原因提出了自己的见解,强调了人工智能中基础算法相较于算力的基础性作用:算力提升论或为误解,应当是算法带来基础性突破,然后算力的提升才能在其后一段时间内放大算法突破带来的红利。 周教授随后举例说明,BP算法在深层神经网络里存在着梯度消失问题,而2006年随着Hinton的深层模型问世,深度学习一直在近二十年的时间内火热不已,并随着算力不断提升在不同领域有着越来越亮眼的表现。

接着周教授乘势抛出了两个贯穿本次演讲始终的公式:“神经网络=神经网络模型+学习算法”,而神经网络模型=神经元模型+网络结构。周教授解释道,学习算法指的就是BP算法这种历久弥新的算法,而本次演讲的重点——神经元模型,指的就是受生物神经元接受多个电信号输入,达到阈值后激活并输出的启发,所设计的机器学习神经元数学模型,即著名的M-P神经元模型,形如:

y = f ( ∑ i = 1 n w i x i − θ ) y = f(\sum_{i=1}^n w_i x_i - \theta) y=f(i=1nwixiθ)

生物神经元

周教授指出,关于神经网络的大多数研究都注重在网络结构上做设计,而关于神经元模型的研究甚少,甚至问世近80年的M-P神经元模型到今天仍然遍地在用。此外,近来关于神经元模型的研究又开始有所浮现,讨论能否有别的神经元模型可以使用。在这样的背景下,周教授团队着手了新型神经元模型的相关研究。

周教授首先分享了他们团队在分岔脉冲神经网络 (Bifurcation Spiking Neural Network) 方面的研究1

首先,脉冲神经网络中一种被广泛研究的神经元模型叫做Leaky integrate and fire (LIF) 模型,LIF神经元模型除了考虑信号的传递和神经元激活,还考虑了信号传递的时间累计过程,其一般形式为:

τ d u d t = − u + R f ( I ( t ) ) \tau \frac{du}{dt} = -u + R f(\bold{I(t)}) τdtdu=u+Rf(I(t))

周教授团队从动力系统视角进行分析,发现基于LIF神经元模型的脉冲神经网络的解空间是分开的三部分,由参数 τ \tau τ决定。因此提出了分岔脉冲神经网络(Bifurcation Spiking Neural Network, BSNN),实现了自适应动力系统,将解空间连起来,解决了解空间分岔的问题,使得解空间可达。

周教授进一步分享了他们团队提出的一种生物上合理且具有灵活的突触可塑性的全新神经元模型:Flexible Transmitter (FT) Model 2.
这种FT神经元模型参考了生物神经元的神经递质传递过程,尤其是突触的收缩和发育过程,神经递质不仅起到信号传递作用,还会控制突触发育和收缩,使得神经递质的接受量相应增大和缩小,这一过程如下图所示。

生物神经元中突触的神经递质传递与突触伸缩过程

FT神经元模型可以表示为:

( s t , r t ) = f ( w x t , v r t − 1 ) (s_t,r_t) = f(wx_t,vr_{t-1}) (st,rt)=f(wxt,vrt1)

用复数进行数学上的抽象可表示为:

s t + r t i = f ( w x t , v r t − 1 i ) s_t +r_t \bold{i} = f(wx_t,vr_{t-1} \bold{i} ) st+rti=f(wxt,vrt1i)

周教授强调,这种FT神经元模型的能力更加强大,因为M-P神经元模型只是FT神经元模型的一个子集。

一种简单基于FT神经元模型的FT神经网络 (FTNet) 同样也被展示:

s t + r t i = f ( W x t , V r t − 1 i ) \bold{s_t} +\bold{r_t i} = f( \bold{Wx}_t, \bold{Vr}_{t-1} \bold{i} ) st+rti=f(Wxt,Vrt1i)

周教授认为,这种新型FT神经元模型和基于其上的FT神经网络具有更加强大的能力,可以解决以前基于M-P神经元的神经网络无法解决的问题。周教授团队在一些简单的任务上和常见的神经网络进行对比,例如在MNIST数据集上,和CNN、RNN、基于M-P神经元的FCN、基于脉冲神经网络的SNN等,结果显示基于FT神经元的神经网络具有最高的Accuracy。但这并非没有代价,周教授毫不掩饰地指出了FT神经网络存在的问题,即更多的计算时间。

演讲结束后,老师同学们都很感兴趣,不断提出自己的疑惑并向周教授请教。而周教授也非常耐心、坦诚地回答,整个问答环节持续了超过半小时。


  1. Zhang, Shao-Qun, Zhao-Yu Zhang, and Zhi-Hua Zhou. “Bifurcation spiking neural network.” The Journal of Machine Learning Research 22.1 (2021): 11459-11479. ↩︎

  2. Zhang, Shao-Qun, and Zhi-Hua Zhou. “Flexible transmitter network.” Neural Computation 33.11 (2021): 2951-2970. ↩︎

相关文章:

讲座思考 | 周志华教授:新型机器学习神经元模型的探索

12月22日,有幸听了南京大学周志华教授题为“新型机器学习神经元模型的探索”的讲座。现场热闹非凡,大家像追星一样拿着“西瓜书”找周教授签名。周教授讲得依旧循循善诱,由浅入深,听得我很入迷,故作此记。 周教授首先就…...

docker构建镜像及项目部署

文章目录 练习资料下载一、docker基础1. 基本概念2. docker常见命令3. 命令别名4. 数据卷 二、docker自定义镜像1. 了解镜像结构2. 了解Dockerfile3. 构建Dockerfile文件,完成自定义镜像 三、网络1. docker常见网络命令2. docker自带虚拟网络3. 自定义网络 四、dock…...

ARM串口通信编程实验

完成:从终端输入选项,完成点灯关灯,打开风扇关闭风扇等操作 #include "gpio.h" int main() {char a;//char buf[128];uart4_config();gpio_config();while(1){//接收一个字符数据a getchar();//发送接收的字符putchar(a);switch(…...

MyBatis的延迟加载(懒加载)

MyBatis 中的延迟加载是指在需要时才加载对象的某些属性或关联对象,而不是在初始查询时就加载所有数据。这对于性能优化和减少不必要的数据库查询非常有用。 1. 基于配置文件的延迟加载 在 MyBatis 的 XML 映射文件中,你可以使用 lazyLoadingEnabled 和…...

嵌入式-stm32-用PWM点亮LED实现呼吸灯

一:知识前置 1.1、LED灯怎么才能亮? 答:LED需要低电平才能亮,高电平是灯灭。 1.2、LED灯为什么可以越来越亮,越来越暗? 答:这是用到不同占空比来实现的,控制LED实现呼吸灯&…...

C语言初学7:循环

while 循环 一、while 循环语法: while(condition) {statement(s); } condition 为任意非零值时都为 true。当条件为 true 时执行循环。 当条件为 false 时,退出循环,程序流将继续执行紧接着循环的下一条语句。 二、while 循环举例 #inc…...

力扣69. x 的平方根

二分查找 思路: 设置 left 指针为 0,right 指针为 x;如果 mid (right - left) / 2 left 的平方小于或等于 x,此时移动 left mid 1,并缓存当前 mid 值,可能这个 mid 就是结果,或者 x 的平方…...

go语言学习计划。

第1周:Go语言概述与环境搭建 内容:了解Go语言的历史、特点和应用场景。安装Go环境,配置工作区。实践:编写第一个Go程序,了解Go的编译运行流程。 第2周:基本语法与数据类型 内容:学习基本数据…...

设计模式之-3种常见的工厂模式简单工厂模式、工厂方法模式和抽象工厂模式,每一种模式的概念、使用场景和优缺点。

系列文章目录 设计模式之-6大设计原则简单易懂的理解以及它们的适用场景和代码示列 设计模式之-单列设计模式,5种单例设计模式使用场景以及它们的优缺点 设计模式之-3种常见的工厂模式简单工厂模式、工厂方法模式和抽象工厂模式,每一种模式的概念、使用…...

docker run --help帮助文档

文章目录 基础环境docker run --helpdocker run --help中文翻译 基础环境 环境:ubuntu20.04 x64 使用apt install docker.io安装docker docker版本: rootky:/userdata/testOnebuttonDeploy/shsany_ai/kyai_arm_ubuntu# docker -v Docker version 24.0…...

【Qt-Timer】

Qt编程指南 ■ QTimeEvent■ Qtimer■ QDateTimeEdit■ QDateTime■■ ■ QTimeEvent 1.启动定时器 定时器ID startTimer (时间间隔); int idt startTimer (250); 每隔指定的时间间隔,触发一次定时器事件。 2.定时器事件处理 virtual void timerEvent (QTimeEvent…...

Java多线程技术五——单例模式与多线程-备份

1 概述 本章的知识点非常重要。在单例模式与多线程技术相结合的过程中,我们能发现很多以前从未考虑过的问题。这些不良的程序设计如果应用在商业项目中将会带来非常大的麻烦。本章的案例也充分说明,线程与某些技术相结合中,我们要考虑的事情会…...

Seem环境安装

创建虚拟环境 conda create -n seem python3.8 conda activate seem 安装相关依赖:(不按照的话会报错) sudo apt-get install openmpi-bin libopenmpi-devconda install gcc_linux-64pip install mpi4py 导入环境 export PYTHONPATH$(pwd…...

java八股jvm

JVM虚拟机篇-01-JVM介绍、运行流程_哔哩哔哩_bilibili 1.PC程序计数器 2.堆 3.虚拟机栈 4.方法区/永久代/元空间 5.直接内存 JVM虚拟机篇-06-JVM组成-你听过直接内存吗_哔哩哔哩_bilibili 6.双亲委派 从下往上找,有同名类优先使用上级加载器的,不用自己…...

家校互通小程序实战开发02首页搭建

目录 1 创建应用2 搭建首页总结 我们上一篇介绍了家校互通小程序的需求,创建了对应的数据源。有了这个基础的分析之后,我们就可以进入到开发阶段了。开发小程序,先需要创建应用。 1 创建应用 登录控制台,点击创建应用&#xff0c…...

使用matlab制作声音采样率转换、播放以及显示的界面

利用matlab做一个声音采样率转换、播放以及显示的界面 大抵流程: 图形界面创建:使用figure函数创建名为“声音采样率转换”的图形界面,并设置了其位置和大小。 按钮和文本框:使用uicontrol函数创建了选择音频文件的按钮、显示当前…...

FPGA-AMBA协议、APB协议、AHB规范、AXI4协议规范概述及它们之间的关系

FPGA-AMBA协议、APB协议、AHB协议、AXI4协议规范概述 笔记记录,AMBA协议、APB协议、AHB规范、AXI4协议规范概述,只是概述描述,具体详细的协议地址传输、数据传输等内容将在下一章节详细说明。 文章目录 FPGA-AMBA协议…...

NI VeriStand中的硬件I / O延迟时间

NI VeriStand中的硬件I / O延迟时间 - NI 适用于 软件 VeriStand 问题详述 在我的VeriStand项目中,我要从DAQ或FPGA硬件中获取数据,在模型中处理输出,然后输出数据。在硬件输入和输出之间,我应该期望什么样的延迟?如…...

YoloV8的目标检测推理

YoloV8的目标检测推理 原始的YoloV8封装的层次太高,想要为我们所用可能需要阅读很多API,下面给出比较简单的使用方式 导入所需的库 os:用于操作文件系统。cv2 (OpenCV):用于图像处理。numpy:提供数学运算&#xff0…...

c语言中数据结构

一、结构体的由来 1. 数据类型的不足 C语言中,基本数据类型只有整型、字符型、浮点型等少数几种,无法满足复杂数据类型的需要。 2. 数组的限制 虽然数组可以存储多个同类型的数据,但是数组中的元素个数是固定的,无法动态地改变…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...