当前位置: 首页 > news >正文

CNN实现对手写字体的迭代

导入库

import torchvision
import torch
from torchvision.transforms import ToTensor
from torch import nn
import matplotlib.pyplot as plt

导入手写字体数据

train_ds=torchvision.datasets.MNIST('data/',train=True,transform=ToTensor(),download=True)
test_ds=torchvision.datasets.MNIST('data/',train=False,transform=ToTensor(),download=True)
train_dl=torch.utils.data.DataLoader(train_ds,batch_size=64,shuffle=True)
test_dl=torch.utils.data.DataLoader(test_ds,batch_size=46)
imgs,labels=next(iter(train_dl))
print(imgs.shape)
print(labels.shape)

从上述代码中可以看到,train_dl返回的图片数据是四维的,4个维度分别代表批次、通道数、高度和宽度(batch,channel,height,width),这正是PyTorch下卷积模型所需要的图片输入格式

创建卷积模型并训练

下面创建卷积模型来识别MNIST手写数据集。我们所创建的卷积模型先试用两个卷积层和两个池化层,然后将最后一个池化的输出展平为二维数据形式连接到全连接层,最后是输出层,中间的每一层都是用ReLU函数激活,输出层的输出张量长度为10,与类别数一致。代码如下

class Model(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)   #初始化第一个卷积层self.conv2=nn.Conv2d(6,16,5)  #初始化第二个卷积层self.liner_1=nn.Linear(16*4*4,256)  #初始化全连接层16*4*4为输入的特征,256为输出的特征#就是将一个大小为16×4×4的输入特征映射到一个大小为256的输出特征空间中self.liner_2=nn.Linear(256,10)  #初始化输出层def forward(self,input):#调用第一个卷积层和池化层x=torch.max_pool2d(torch.relu(self.conv1(input)),2)#调用第二个卷积层和池化层x=torch.max_pool2d(torch.relu(self.conv2(x)),2)# view()方法将数据展平为二维形式# torch.Size([64,16,4,4])->torch.Size([64,16*4*4])x=x.view(-1,16*4*4)x=torch.relu(self.liner_1(x))  # 全连接层x=self.liner_2(x)  #输出层return x#判断当前可用的device,如果显卡可用,就设置为cuda,否则设置为cpu
device="cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))#初始化模型,并使用.to()方法将其上传到device
#如果GPU可以用,会上传到显存,如果device是CPU,依保留在内存
model=Model().to(device)  # 初始化模型并设置设备
print(model)loss_fn=nn.CrossEntropyLoss() # 初始化交叉熵损失函数optimizer=torch.optim.SGD(model.parameters(),lr=0.001) # 初始化优化器def train(dataloader,model,loss_fn,optimizer):size=len(dataloader.dataset)  # 获取当前数据集样本总数量num_batches=len(dataloader)  #获得当前dataloader总批次数# train_loss用于累计所有批次的损失之和,correct用于累计预测正确的样本总数train_loss,correct=0,0for X,y in dataloader:  #对dataloader进行迭代X,y=X.to(device),y.to(device)  #每一批次的数据设置为使用当前device进行预测,并计算一个批次的损失pred=model(X)loss=loss_fn(pred,y)  # 返回的是平均损失#使用反向传播算法,根据损失优化模型参数optimizer.zero_grad()  #将模型参数的梯度全部归零loss.backward()  # 损失反向传播,计算模型参数梯度optimizer.step()  # 根据梯度优化参数with torch.no_grad():# correct 用于累计预测正确的样本总数correct+=(pred.argmax(1)==y).type(torch.float).sum().item()#train_loss用于累计所有批次的损失之和train_loss+=loss.item()#train_loss是所有批次的损失之和,所以计算全部样本的平均损失时需要处于总批次数train_loss/=num_batches#correct是预测正确的样本总是,若计算整个epoch总体正确率,需除以样本总数量correct/=sizereturn train_loss,correctdef test(dataloader,model):size=len(dataloader.dataset)num_batches=len(dataloader)test_loss,correct=0,0with torch.no_grad():for X,y in dataloader:X,y=X.to(device),y.to(device)pred=model(X)test_loss+=loss_fn(pred,y).item()correct+=(pred.argmax(1)==y).type(torch.float).sum().item()test_loss/=num_batchescorrect/=sizereturn test_loss,correctepochs=50  #一个epoch代表对全部数据训练一遍train_loss=[]  #每个epoch训练中训练数据集的平均损失被添加到此列表
train_acc=[] #每个epoch训练中训练数据集的平均正确率被添加到此列表
test_loss=[]  #每个epoch训练中测试数据集的平均损失被添加到此列表
test_acc=[] #每个epoch训练中测试数据集的平均正确率被添加到此列表for epoch in range(epochs):#调用train()函数训练epoch_loss,epoch_acc=train(train_dl,model,loss_fn,optimizer)#调用test()函数测试epoch_test_loss,epoch_test_acc=test(test_dl,model)train_loss.append(epoch_loss)train_acc.append(epoch_acc)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)#定义一个打印模版template=("epoch:{:2d},train_loss:{:.5f},train_acc:{:.1f}%,test_loss:{:.5f},test_acc:{:.1f}%")#输出当前的epoch的训练集损失、训练集正确率、测试集损失、测试集正确率print(template.format(epoch,epoch_loss,epoch_acc*100,epoch_test_loss,epoch_test_acc*100))print("Done!")plt.plot(range(1,epochs+1),train_loss,label="train_loss")
plt.plot(range(1,epochs+1),test_loss,label='test_loss',ls="--")
plt.xlabel('epoch')
plt.legend()
plt.show()plt.plot(range(1, epochs + 1), train_acc, label="train_acc")
plt.plot(range(1, epochs + 1), test_acc, label='test_acc', ls="--")
plt.xlabel('acc')
plt.legend()
plt.show()

函数式API

import torch.nn.functional as Fclass Model(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)   #初始化第一个卷积层self.conv2=nn.Conv2d(6,16,5)  #初始化第二个卷积层self.liner_1=nn.Linear(16*4*4,256)  #初始化全连接层16*4*4为输入的特征,256为输出的特征#就是将一个大小为16×4×4的输入特征映射到一个大小为256的输出特征空间中self.liner_2=nn.Linear(256,10)  #初始化输出层def forward(self,input):#调用第一个卷积层和池化层x=F.max_pool2d(F.relu(self.conv1(input)),2)#调用第二个卷积层和池化层x=F.max_pool2d(F.relu(self.conv2(x)),2)# view()方法将数据展平为二维形式# torch.Size([64,16,4,4])->torch.Size([64,16*4*4])x=x.view(-1,16*4*4)x=F.relu(self.liner_1(x))  # 全连接层x=self.liner_2(x)  #输出层return x

相关文章:

CNN实现对手写字体的迭代

导入库 import torchvision import torch from torchvision.transforms import ToTensor from torch import nn import matplotlib.pyplot as plt 导入手写字体数据 train_dstorchvision.datasets.MNIST(data/,trainTrue,transformToTensor(),downloadTrue) test_dstorchvis…...

docker学习笔记01-安装docker

1.Docker的概述 用Go语言实现的开源应用项目(container);克服操作系统的笨重;快速部署;只隔离应用程序的运行时环境但容器之间可以共享同一个操作系统;Docker通过隔离机制,每个容器间是互相隔离…...

【《设计模式之美》】如何取舍继承与组合

文章目录 什么情况下不推荐使用继承?组合相比继承有哪些优势?使用组合、继承的时机 本文主要想了解: 为什么组合优于继承,多用组合少用继承。如何使用组合来替代继承哪些情况适用继承、组合。有哪些设计模式使用到了继承、组合。 …...

一步到位:用Python实现PC屏幕截图并自动发送邮件,实现屏幕监控

在当前的数字化世界中,自动化已经成为我们日常生活和工作中的关键部分。它不仅提高了效率,还节省了大量的时间和精力。在这篇文章中,我们将探讨如何使用Python来实现一个特定的自动化任务 - PC屏幕截图自动发送到指定的邮箱。 这个任务可能看…...

Spring Boot+RocketMQ 实现多实例分布式环境下的事件驱动

为什么要使用MQ? 在Spring Boot Event这篇文章中已经通过Guava或者SpringBoot自身的Listener实现了事件驱动,已经做到了对业务的解耦。为什么还要用到MQ来进行业务解耦呢? 首先无论是通过Guava还是Spring Boot自身提供的监听注解来实现的事…...

oracle ORA-01704: string literal too long ORACLE数据库clob类型

当oracle数据表中有clob类型字段时候&#xff0c;insert或update的sql语句中&#xff0c;超过长度就会报错 ORA-01704: string literal too long update xxx set xxx <div><h1>123</h1></div> where id 100;可以修改为 DECLAREstr varchar2(10000…...

微星主板强刷BIOS(以微星X370gaming plus 为例)

(前两天手欠&#xff0c;用U盘通过微星的M-flash升级BIOS 升级过程中老没动静就强制关机了 然后电脑就打不开了) 几种强刷主板BIOS的方式 在网上看到有三种强刷BIOS的方式分别是: 使用夹子编程器 (听说不太好夹)使用微星转接线编程器&#xff08;只能用于微星主板&#xff0…...

matlab 图像上生成指定中心,指定大小的矩形窗

用matlab实现在图像上生成指定中心,指定大小的矩形窗(奇数*奇数) function PlaneWin PlaneWindow(CentreCoorX,CentreCoorY,RadiusX,RadiusY,SizeImRow,SizeImColumn) % 在图像上生成指定中心,指定大小的矩形窗(奇数*奇数) % % Input: % CentreCoorX(1*1) % CentreCoorY(1*1)…...

❀My学习小记录之算法❀

目录 算法:) 一、定义 二、特征 三、基本要素 常用设计模式 常用实现方法 四、形式化算法 五、复杂度 时间复杂度 空间复杂度 六、非确定性多项式时间&#xff08;NP&#xff09; 七、实现 八、示例 求最大值算法 求最大公约数算法 九、分类 算法:) 一、定义 …...

Hive-high Avaliabl

hive—high Avaliable ​ hive的搭建方式有三种&#xff0c;分别是 ​ 1、Local/Embedded Metastore Database (Derby) ​ 2、Remote Metastore Database ​ 3、Remote Metastore Server ​ 一般情况下&#xff0c;我们在学习的时候直接使用hive –service metastore的方式…...

码住!8个小众宝藏的开发者学习类网站

1、simplilearn simplilearn是全球排名第一的在线学习网站&#xff0c;它的课程由世界知名大学、顶级企业和领先的行业机构通过实时在线课程设计和提供&#xff0c;其中包括顶级行业从业者、广受欢迎的培训师和全球领导者。 2、VisuAlgo VisuAlgo是一个免费的在线学习算法和数…...

Postman常见问题及解决方法

1、网络连接问题 如果Postman无法发送请求或接收响应&#xff0c;可以尝试以下操作&#xff1a; 检查网络连接是否正常&#xff0c;包括检查网络设置、代理设置等。 确认请求的URL是否正确&#xff0c;并检查是否使用了正确的HTTP方法&#xff08;例如GET、POST、PUT等&#…...

ubuntu图形化登录默认只有guest session账号解决方法

新安装的ubuntu16.x 图形化界面登录默认只有guest账号&#xff0c;只有进入guest账号之后再去手动切换root账号很麻烦&#xff0c;但是这样确实很安全。为了方便希望能够在登录图形化界面的时候以root身份/或者自定义其他身份登录。做一下简单的记录。 使用终端命令行编辑文件…...

全国计算机等级考试| 二级Python | 真题及解析(1)

一、选择题 1. 按照“后进先出”原则组织数据的数据结构是____ A栈 B双向链表 C二叉树 D队列 正确答案: A 2. 以下选项的叙述中,正确的是 A在循环队列中,只需要队头指针就能反映队列中元素的动态变化情况 B在循环队列中,只需要队尾指针就能反映队列中元素的动态变…...

Java开发框架和中间件面试题(9)

目录 102.你了解秒杀吗&#xff1f;怎么设计&#xff1f; 103.什么是缓存穿透&#xff1f;怎么解决&#xff1f; 102.你了解秒杀吗&#xff1f;怎么设计&#xff1f; 1.设计难点&#xff1a;并发量大&#xff0c;应用&#xff0c;数据库都承受不了。另外难控制超卖。 2.设计…...

【ARMv8M Cortex-M33 系列 2 -- Cortex-M33 JLink 连接 及 JFlash 烧写介绍】

文章目录 Jlink 工具JLink 命令行示例JFlash 烧写问题Jlink 工具 J-Link 是 SEGGER 提供的一款流行的 JTAG 调试器,它支持多个平台和处理器。JLink.exe 是 J-Link 调试器的命令行接口,它允许用户通过命令行执行一系列操作,例如编程、擦除、调试等。 工具链接: https://ww…...

react pwa应用示例

创建一个基于React的PWA应用&#xff0c;你可以使用create-react-app&#xff0c;它自带PWA支持&#xff0c;但默认是关闭的。以下是创建React PWA应用的步骤&#xff1a; 安装create-react-app 如果你还没有安装&#xff0c;你可以通过npm来安装&#xff1a; npm install -…...

python如何通过日志分析加入黑名单

python通过日志分析加入黑名单 监控nginx日志&#xff0c;若有人攻击&#xff0c;则加入黑名单&#xff0c;操作步骤如下&#xff1a; 1.读取日志文件 2.分隔文件&#xff0c;取出ip 3.将取出的ip放入list&#xff0c;然后判读ip的次数 4.若超过设定的次数&#xff0c;则加…...

RabbitMq知识概述

本文来说下RabbitMq相关的知识与概念 文章目录 概述AMQP协议Exchange 消息如何保证100&#xff05;投递什么是生产端的可靠性投递可靠性投递保障方案 消息幂等性高并发的情况下如何避免消息重复消费confirm 确认消息、Return返回消息如何实现confirm确认消息return消息机制 消费…...

专业级A链接测试特有

A链接普通 A链接添加链接描述带有blank...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

python打卡day49@浙大疏锦行

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 一、通道注意力模块复习 & CBAM实现 import torch import torch.nn as nnclass CBAM(nn.Module):def __init__…...

MCP和Function Calling

MCP MCP&#xff08;Model Context Protocol&#xff0c;模型上下文协议&#xff09; &#xff0c;2024年11月底&#xff0c;由 Anthropic 推出的一种开放标准&#xff0c;旨在统一大模型与外部数据源和工具之间的通信协议。MCP 的主要目的在于解决当前 AI 模型因数据孤岛限制而…...

Vue3学习(接口,泛型,自定义类型,v-for,props)

一&#xff0c;前言 继续学习 二&#xff0c;TS接口泛型自定义类型 1.接口 TypeScript 接口&#xff08;Interface&#xff09;是一种定义对象形状的强大工具&#xff0c;它可以描述对象必须包含的属性、方法和它们的类型。接口不会被编译成 JavaScript 代码&#xff0c;仅…...

组合模式:构建树形结构的艺术

引言:处理复杂对象结构的挑战 在软件开发中,我们常遇到需要处理部分-整体层次结构的场景: 文件系统中的文件与文件夹GUI中的容器与组件组织结构中的部门与员工菜单系统中的子菜单与菜单项组合模式正是为解决这类问题而生的设计模式。它允许我们将对象组合成树形结构来表示&…...