力扣热题100道-哈希篇
哈希
1.两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
/*
思路:
采用哈希表:
如果target-nums[i]有值,就输出i与target-nums[i]的下标
如果target-nums[i]无值,就将nums[i]的下标i存到哈希表中
*/
class Solution {
public:vector<int> twoSum(vector<int>& nums, int target) {unordered_map<int,int> hash;for(int i=0;i<nums.size();i++){if(hash.count(target-nums[i])){return {hash[target-nums[i]],i};}else hash[nums[i]] = i;}return {-1,-1};}
};
49.字母异位词分词
给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。
字母异位词 是由重新排列源单词的所有字母得到的一个新单词。
示例 1:
输入: strs = ["eat", "tea", "tan", "ate", "nat", "bat"]
输出: [["bat"],["nat","tan"],["ate","eat","tea"]]
示例 2:
输入: strs = [""]
输出: [[""]]
示例 3:
输入: strs = ["a"]
输出: [["a"]]
/*
思路 先对每个字符串进行排序,相同顺序的存到哈希表中
最后将相同顺序的存到一个vector<string>中
*/
class Solution {
public:vector<vector<string>> groupAnagrams(vector<string>& strs) {unordered_map<string,vector<string>> hash;string str;for(int i=0;i<strs.size();i++){str=strs[i];sort(str.begin(),str.end());hash[str].push_back(strs[i]);}vector<vector<string>> res;for(auto [x,c]:hash){res.push_back(c);}return res;}
};
128.最长连续序列
给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
请你设计并实现时间复杂度为 O(n) 的算法解决此问题。
示例 1:
输入:nums = [100,4,200,1,3,2]
输出:4
解释:最长数字连续序列是 [1, 2, 3, 4]。它的长度为 4。
示例 2:
输入:nums = [0,3,7,2,5,8,4,6,0,1]
输出:9
/*
思路:
采用一个无序集合,存储所有非重复的值
遍历无序集合,如果x-1存在则跳过,找到最起始的位置进行遍历,计数。
*/
class Solution {
public:int longestConsecutive(vector<int>& nums) {unordered_set<int> un_set;for(auto c:nums){un_set.insert(c); }int res = 0;for(auto c:un_set){if(!un_set.count(c-1)){int curnum = c;int curlength = 1;while(un_set.count(curnum+1)){curnum+=1;curlength+=1;}res = max(curlength,res);}}return res;}
};
相关文章:
力扣热题100道-哈希篇
哈希 1.两数之和 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你…...
YOLOv7+Pose姿态估计+tensort部署加速
YOLOv7是一种基于深度学习的目标检测算法,它能够在图像中准确识别出不同目标的位置和分类。而姿态估计pose和tensort则是一种用于实现人体姿态估计的算法,可以对人体的关节位置和方向进行精准的检测和跟踪。 下面我将分点阐述YOLOv7姿态估计posetensort…...
gitee+picgo+typora图床搭建
giteepicgotypora图床搭建 1.安装typora 官网下载直接安装:https://www.typora.io/#download 2.编辑typora图像设置 打开 文件 -> 偏好设置 -> 图像设置 插入图片时 选择 上传图片设置 上传服务 为 PicGo-Core(command line) 3.为typora安装PicGo-Core 点…...
Flink项目实战篇 基于Flink的城市交通监控平台(上)
系列文章目录 Flink项目实战篇 基于Flink的城市交通监控平台(上) Flink项目实战篇 基于Flink的城市交通监控平台(下) 文章目录 系列文章目录1. 项目整体介绍1.1 项目架构1.2 项目数据流1.3 项目主要模块 2. 项目数据字典2.1 卡口…...
thinkcmf 文件包含 x1.6.0-x2.2.3 已亲自复现
thinkcmf 文件包含 x1.6.0-x2.2.3 CVE-2019-16278 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用 修复建议总结 漏洞名称 漏洞描述 ThinkCMF是一款基于PHPMYSQL开发的中文内容管理框架,底层采用ThinkPHP3.2.3构建。ThinkCMF提出灵活的应用机制&a…...
本地部署 text-generation-webui
本地部署 text-generation-webui 0. 背景1. text-generation-webui 介绍2. 克隆代码3. 创建虚拟环境4. 安装 pytorch5. 安装 CUDA 运行时库6. 安装依赖库7. 启动 Web UI8. 访问 Web UI9. OpenAI 兼容 API 0. 背景 一直喜欢用 FastChat 本地部署大语言模型,今天试一…...
C语言实验1:C程序的运行环境和运行C程序的方法
一、算法原理 这是学C语言的入门,并不需要很高深的知识,一个hello world 或者一个简单的加法即可 二、实验要求 了解所用的计算机系统的基本操作方法,学会独立使用该系统。 了解在该系统上如何编辑、编译、连接和运行一个C程序。 通过运…...
「微服务」微服务架构中的数据一致性
在微服务中,一个逻辑上原子操作可以经常跨越多个微服务。即使是单片系统也可能使用多个数据库或消息传递解决方案。使用多个独立的数据存储解决方案,如果其中一个分布式流程参与者出现故障,我们就会面临数据不一致的风险 - 例如在未下订单的情…...
ARCGIS PRO SDK 要素空间关系
一、要素与要素查询,返回的是bool值 1、 Touches 判断几何要素是否接触 Touches 如果 geometry1 与 geometry2 接触,则返回 true,否则 false。 touches GeometryEngine.Instance.Touches(Geometry1, Geometry2) 2、…...
Python面向对象高级与Python的异常、模块以及包管理
Python面向对象高级与Python的异常、模块以及包管理 一、Python中的继承 1、什么是继承 我们接下来来聊聊Python代码中的“继承”:类是用来描述现实世界中同一组事务的共有特性的抽象模型,但是类也有上下级和范围之分,比如:生物 => 动物 => 哺乳动物 => 灵长型…...
Python 爬取 哔站视频弹幕 并实现词云图可视化
嗨喽,大家好呀~这里是爱看美女的茜茜呐 环境介绍: python 3.8 解释器 pycharm 编辑器 第三方模块: requests >>> pip install requests protobuf >>> pip install protobuf 如何安装python第三方模块: win R 输入 cmd 点击确定, 输入安装命…...
BP神经网络详细原理,BP神经网络训练界面详解,基于BP神经网络的公司财务风险分类
目录 摘要 BP神经网络参数设置及各种函数选择 参数设置 训练函数 传递函数 学习函数 性能函数 显示函数 前向网络创建函数 BP神经网络训练窗口详解 训练窗口例样 训练窗口四部详解 基于BP神经网络的公司财务风险分类 完整代码下载链接:基于BP神经网络的公司财务风险分类(代码…...
C++ DAY1 作业
1.定义自己的命名空间myspace,并在myspace中定义一个字符串,并实现求字符串长度 #include <iostream>using namespace std; namespace myspace {string str;int length_fun(){getline(cin,str);int i 0;while(str[i] ! \0){i;}return i;}} using…...
「微服务模式」七种微服务反模式
什么是微服务 流行语经常为进化的概念提供背景,并且需要一个良好的“标签”来促进对话。微服务是一个新的“标签”,它定义了我个人一直在发现和使用的领域。文章和会议描述了一些事情,我慢慢意识到,过去几年我一直在发展自己的个人…...
运动耳机哪款性价比最高、性价比最高的运动耳机推荐
近年来,运动蓝牙耳机备受欢迎,成为人们健身时的必备时尚单品。随着蓝牙耳机的不断发展,市场上可供选择的产品种类繁多,因此挑选一款适合自己的蓝牙耳机并不困难。然而,并非每款耳机都适合户外或者运动场景下的使用&…...
FreeRTOS软件定时器
一、简介 二、实验 //创建一个单次定时器和一个周期定时器,打开两个定时器然后等待10s关闭定时器,此时会发现单次定时器打印1次停止,周期定时器打印5次停止 #include "FreeRTOS_demo.h"#define START_TASK_PRIO 1 #define…...
【Java集合类不安全示例】
文章目录 一、List二、Set三、Map 提示:以下是本篇文章正文内容,下面案例可供参考 一、List 代码如下(示例): public class ZZZZZZZZZZ {public static void main(String[] args) {// ArrList 非线程安全的集合List&l…...
cpp_07_类型转换构造_析构函数_深拷贝_静态成员
1 类型转换构造函数 1.1 why? 基本类型之间的转换,编译器内置转换规则:int -> double 类类型之间的转换,编译器不知道转换规则,需要用户提供:Cat -> Dog // consconv_why.cpp 为什么需要自定义转换 #includ…...
Java 已死、前端已凉?
文章目录 Java 的现状前端技术的现状分析结论 关于“Java 已死、前端已凉”的言论,这种说法更多地反映了行业对技术趋势的一种情绪化反应,而不一定是基于事实的判断。下面我来具体分析这个话题。 Java 的现状 Java 的普及与稳定性:Java 作为一…...
Calico IP_AUTODETECTION_METHOD
在 Calico 中,IP_AUTODETECTION_METHOD 的配置项用于指定 Calico 如何检测容器的 IP 地址。 一、kubernetes-internal-ip模式 其中,kubernetes-internal-ip 是一种特殊的模式,用于在 Kubernetes 环境中检测容器的 IP 地址。具体作用如下&…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...
